168
|
1 |
(* Title: HOL/IOA/example/Multiset.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow & Konrad Slind
|
|
4 |
Copyright 1994 TU Muenchen
|
|
5 |
|
|
6 |
Axiomatic multisets.
|
|
7 |
Should be done as a subtype and moved to a global place.
|
|
8 |
*)
|
|
9 |
|
156
|
10 |
goalw Multiset.thy [Multiset.count_def, Multiset.countm_empty_def]
|
|
11 |
"count({|},x) = 0";
|
|
12 |
by (rtac refl 1);
|
|
13 |
val count_empty = result();
|
|
14 |
|
|
15 |
goal Multiset.thy
|
|
16 |
"count(addm(M,x),y) = if(y=x,Suc(count(M,y)),count(M,y))";
|
|
17 |
by (asm_simp_tac (arith_ss addsimps
|
|
18 |
[Multiset.count_def,Multiset.countm_nonempty_def]
|
|
19 |
setloop (split_tac [expand_if])) 1);
|
|
20 |
val count_addm_simp = result();
|
|
21 |
|
|
22 |
goal Multiset.thy "count(M,y) <= count(addm(M,x),y)";
|
|
23 |
by (simp_tac (arith_ss addsimps [count_addm_simp]
|
|
24 |
setloop (split_tac [expand_if])) 1);
|
|
25 |
by (rtac impI 1);
|
|
26 |
by (rtac (le_refl RS (leq_suc RS mp)) 1);
|
|
27 |
val count_leq_addm = result();
|
|
28 |
|
|
29 |
goalw Multiset.thy [Multiset.count_def]
|
|
30 |
"count(delm(M,x),y) = if(y=x,pred(count(M,y)),count(M,y))";
|
|
31 |
by (res_inst_tac [("M","M")] Multiset.induction 1);
|
|
32 |
by (asm_simp_tac (arith_ss
|
|
33 |
addsimps [Multiset.delm_empty_def,Multiset.countm_empty_def]
|
|
34 |
setloop (split_tac [expand_if])) 1);
|
|
35 |
by (asm_full_simp_tac (arith_ss
|
|
36 |
addsimps [Multiset.delm_nonempty_def,
|
|
37 |
Multiset.countm_nonempty_def]
|
|
38 |
setloop (split_tac [expand_if])) 1);
|
|
39 |
by (safe_tac HOL_cs);
|
|
40 |
by (asm_full_simp_tac HOL_ss 1);
|
|
41 |
val count_delm_simp = result();
|
|
42 |
|
|
43 |
goal Multiset.thy "!!M. (!x. P(x) --> Q(x)) ==> (countm(M,P) <= countm(M,Q))";
|
|
44 |
by (res_inst_tac [("M","M")] Multiset.induction 1);
|
|
45 |
by (simp_tac (arith_ss addsimps [Multiset.countm_empty_def]) 1);
|
|
46 |
by (simp_tac (arith_ss addsimps[Multiset.countm_nonempty_def]) 1);
|
|
47 |
by (etac (less_eq_add_cong RS mp RS mp) 1);
|
|
48 |
by (asm_full_simp_tac (arith_ss addsimps [le_eq_less_or_eq]
|
|
49 |
setloop (split_tac [expand_if])) 1);
|
|
50 |
val countm_props = result();
|
|
51 |
|
|
52 |
goal Multiset.thy "!!P. ~P(obj) ==> countm(M,P) = countm(delm(M,obj),P)";
|
|
53 |
by (res_inst_tac [("M","M")] Multiset.induction 1);
|
|
54 |
by (simp_tac (arith_ss addsimps [Multiset.delm_empty_def,
|
|
55 |
Multiset.countm_empty_def]) 1);
|
|
56 |
by (asm_simp_tac (arith_ss addsimps[Multiset.countm_nonempty_def,
|
|
57 |
Multiset.delm_nonempty_def]
|
|
58 |
setloop (split_tac [expand_if])) 1);
|
|
59 |
val countm_spurious_delm = result();
|
|
60 |
|
|
61 |
|
|
62 |
goal Multiset.thy "!!P. P(x) ==> 0<count(M,x) --> 0<countm(M,P)";
|
|
63 |
by (res_inst_tac [("M","M")] Multiset.induction 1);
|
|
64 |
by (simp_tac (arith_ss addsimps
|
|
65 |
[Multiset.delm_empty_def,Multiset.count_def,
|
|
66 |
Multiset.countm_empty_def]) 1);
|
|
67 |
by (asm_simp_tac (arith_ss addsimps
|
|
68 |
[Multiset.count_def,Multiset.delm_nonempty_def,
|
|
69 |
Multiset.countm_nonempty_def]
|
|
70 |
setloop (split_tac [expand_if])) 1);
|
|
71 |
val pos_count_imp_pos_countm = standard(result() RS mp);
|
|
72 |
|
|
73 |
goal Multiset.thy
|
|
74 |
"!!P. P(x) ==> 0<count(M,x) --> countm(delm(M,x),P) = pred(countm(M,P))";
|
|
75 |
by (res_inst_tac [("M","M")] Multiset.induction 1);
|
|
76 |
by (simp_tac (arith_ss addsimps
|
|
77 |
[Multiset.delm_empty_def,
|
|
78 |
Multiset.countm_empty_def]) 1);
|
|
79 |
by (asm_simp_tac (arith_ss addsimps
|
|
80 |
[eq_sym_conv,count_addm_simp,Multiset.delm_nonempty_def,
|
|
81 |
Multiset.countm_nonempty_def,pos_count_imp_pos_countm,
|
|
82 |
suc_pred_id]
|
|
83 |
setloop (split_tac [expand_if])) 1);
|
|
84 |
val countm_done_delm = result();
|