0
|
1 |
(* Title: Substitutions/uterm.thy
|
|
2 |
Author: Martin Coen, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1993 University of Cambridge
|
|
4 |
|
|
5 |
Simple term structure for unifiation.
|
|
6 |
Binary trees with leaves that are constants or variables.
|
|
7 |
*)
|
|
8 |
|
|
9 |
UTerm = Sexp +
|
|
10 |
|
|
11 |
types uterm 1
|
|
12 |
|
|
13 |
arities
|
|
14 |
uterm :: (term)term
|
|
15 |
|
|
16 |
consts
|
|
17 |
UTerm :: "'a node set set => 'a node set set"
|
|
18 |
Rep_UTerm :: "'a uterm => 'a node set"
|
|
19 |
Abs_UTerm :: "'a node set => 'a uterm"
|
|
20 |
VAR :: "'a node set => 'a node set"
|
|
21 |
CONST :: "'a node set => 'a node set"
|
|
22 |
COMB :: "['a node set, 'a node set] => 'a node set"
|
|
23 |
Var :: "'a => 'a uterm"
|
|
24 |
Const :: "'a => 'a uterm"
|
|
25 |
Comb :: "['a uterm, 'a uterm] => 'a uterm"
|
|
26 |
UTerm_rec :: "['a node set, 'a node set => 'b, 'a node set => 'b, \
|
|
27 |
\ ['a node set , 'a node set, 'b, 'b]=>'b] => 'b"
|
|
28 |
uterm_rec :: "['a uterm, 'a => 'b, 'a => 'b, \
|
|
29 |
\ ['a uterm, 'a uterm,'b,'b]=>'b] => 'b"
|
|
30 |
|
|
31 |
rules
|
|
32 |
UTerm_def "UTerm(A) == lfp(%Z. A <+> A <+> Z <*> Z)"
|
|
33 |
(*faking a type definition...*)
|
|
34 |
Rep_UTerm "Rep_UTerm(xs): UTerm(range(Leaf))"
|
|
35 |
Rep_UTerm_inverse "Abs_UTerm(Rep_UTerm(xs)) = xs"
|
|
36 |
Abs_UTerm_inverse "M: UTerm(range(Leaf)) ==> Rep_UTerm(Abs_UTerm(M)) = M"
|
|
37 |
(*defining the concrete constructors*)
|
|
38 |
VAR_def "VAR(v) == In0(v)"
|
|
39 |
CONST_def "CONST(v) == In1(In0(v))"
|
|
40 |
COMB_def "COMB(t,u) == In1(In1(t . u))"
|
|
41 |
(*defining the abstract constructors*)
|
|
42 |
Var_def "Var(v) == Abs_UTerm(VAR(Leaf(v)))"
|
|
43 |
Const_def "Const(c) == Abs_UTerm(CONST(Leaf(c)))"
|
|
44 |
Comb_def "Comb(t,u) == Abs_UTerm(COMB(Rep_UTerm(t),Rep_UTerm(u)))"
|
|
45 |
|
|
46 |
(*uterm recursion*)
|
|
47 |
UTerm_rec_def
|
|
48 |
"UTerm_rec(M,b,c,d) == wfrec(trancl(pred_Sexp), M, \
|
|
49 |
\ %z g. Case(z, %x. b(x), \
|
|
50 |
\ %w. Case(w, %x. c(x), \
|
|
51 |
\ %v. Split(v, %x y. d(x,y,g(x),g(y))))))"
|
|
52 |
|
|
53 |
uterm_rec_def
|
|
54 |
"uterm_rec(t,b,c,d) == \
|
|
55 |
\ UTerm_rec(Rep_UTerm(t), %x.b(Inv(Leaf,x)), %x.c(Inv(Leaf,x)), \
|
|
56 |
\ %x y q r.d(Abs_UTerm(x),Abs_UTerm(y),q,r))"
|
|
57 |
|
|
58 |
end
|