ex/PL0.thy
author clasohm
Fri, 08 Jul 1994 12:01:55 +0200
changeset 91 a94029edb01f
parent 81 fded09018308
permissions -rw-r--r--
added mixfix annotations to constructor declarations
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     1
(*  Title: 	HOL/ex/pl0.thy
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     2
    ID:         $Id$
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     3
    Author: 	Tobias Nipkow
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     4
    Copyright   1994  TU Muenchen
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     5
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     6
Syntax of propositional logic formulae.
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     7
*)
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     8
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
     9
PL0 = HOL +
81
fded09018308 adopted to new datatype definition method
clasohm
parents: 56
diff changeset
    10
datatype
91
a94029edb01f added mixfix annotations to constructor declarations
clasohm
parents: 81
diff changeset
    11
    'a pl = false | var ('a) ("#_") | "->" ('a pl,'a pl) (infixr 90)
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents:
diff changeset
    12
end