ex/pl.thy
author convert-repo
Thu, 23 Jul 2009 14:03:20 +0000
changeset 255 435bf30c29a5
parent 56 385d51d74f71
permissions -rw-r--r--
update tags
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
     1
(*  Title: 	HOL/ex/pl.thy
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     2
    ID:         $Id$
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     3
    Author: 	Tobias Nipkow
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
     4
    Copyright   1994  TU Muenchen
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     5
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     6
Inductive definition of propositional logic.
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     7
*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     8
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
     9
PL = Finite + PL0 +
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    10
consts
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    11
    axK,axS,axDN:: "'a pl set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    12
    ruleMP,thms :: "'a pl set => 'a pl set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    13
    "|-" 	:: "['a pl set, 'a pl] => bool"	(infixl 50)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    14
    "|="	:: "['a pl set, 'a pl] => bool"	(infixl 50)
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    15
    pl_rec	:: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b"
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    16
    eval	:: "['a set, 'a pl] => bool"	("_[_]" [100,0] 100)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    17
    hyps	:: "['a pl, 'a set] => 'a pl set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    18
rules
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    19
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    20
  (** Proof theory for propositional logic **)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    21
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    22
    axK_def   "axK ==  {x . ? p q.   x = p->q->p}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    23
    axS_def   "axS ==  {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    24
    axDN_def  "axDN == {x . ? p.     x = ((p->false) -> false) -> p}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    25
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    26
    (*the use of subsets simplifies the proof of monotonicity*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    27
    ruleMP_def  "ruleMP(X) == {q. ? p:X. p->q : X}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    28
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    29
    thms_def
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    30
   "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    31
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    32
    conseq_def  "H |- p == p : thms(H)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    33
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    34
    sat_def "H |= p  ==  (!tt. (!q:H. tt[q]) --> tt[p])"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    35
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    36
    pl_rec_var   "pl_rec(#v,f,y,z)    = f(v)"
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    37
    pl_rec_false "pl_rec(false,f,y,z) = y"
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    38
    pl_rec_imp   "pl_rec(p->q,f,y,g)  = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))"
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    39
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    40
    eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)"
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    41
56
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    42
    hyps_def
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    43
      "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)"
385d51d74f71 Used Datatype functor to define propositional logic terms.
nipkow
parents: 48
diff changeset
    44
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    45
end