author | convert-repo |
Thu, 23 Jul 2009 14:03:20 +0000 | |
changeset 255 | 435bf30c29a5 |
parent 56 | 385d51d74f71 |
permissions | -rw-r--r-- |
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
1 |
(* Title: HOL/ex/pl.thy |
0 | 2 |
ID: $Id$ |
3 |
Author: Tobias Nipkow |
|
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
4 |
Copyright 1994 TU Muenchen |
0 | 5 |
|
6 |
Inductive definition of propositional logic. |
|
7 |
*) |
|
8 |
||
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
9 |
PL = Finite + PL0 + |
0 | 10 |
consts |
11 |
axK,axS,axDN:: "'a pl set" |
|
12 |
ruleMP,thms :: "'a pl set => 'a pl set" |
|
13 |
"|-" :: "['a pl set, 'a pl] => bool" (infixl 50) |
|
14 |
"|=" :: "['a pl set, 'a pl] => bool" (infixl 50) |
|
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
15 |
pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" |
0 | 16 |
eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) |
17 |
hyps :: "['a pl, 'a set] => 'a pl set" |
|
18 |
rules |
|
19 |
||
20 |
(** Proof theory for propositional logic **) |
|
21 |
||
22 |
axK_def "axK == {x . ? p q. x = p->q->p}" |
|
23 |
axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}" |
|
24 |
axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}" |
|
25 |
||
26 |
(*the use of subsets simplifies the proof of monotonicity*) |
|
27 |
ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}" |
|
28 |
||
29 |
thms_def |
|
30 |
"thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))" |
|
31 |
||
32 |
conseq_def "H |- p == p : thms(H)" |
|
33 |
||
34 |
sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" |
|
35 |
||
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
36 |
pl_rec_var "pl_rec(#v,f,y,z) = f(v)" |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
37 |
pl_rec_false "pl_rec(false,f,y,z) = y" |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
38 |
pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" |
0 | 39 |
|
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
40 |
eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" |
0 | 41 |
|
56
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
42 |
hyps_def |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
43 |
"hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" |
385d51d74f71
Used Datatype functor to define propositional logic terms.
nipkow
parents:
48
diff
changeset
|
44 |
|
0 | 45 |
end |