0
|
1 |
(* Title: HOL/wf.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
For wf.thy. Well-founded Recursion
|
|
7 |
*)
|
|
8 |
|
|
9 |
open WF;
|
|
10 |
|
|
11 |
val H_cong = read_instantiate [("f","H::[?'a, ?'a=>?'b]=>?'b")]
|
|
12 |
(standard(refl RS cong RS cong));
|
|
13 |
val H_cong1 = refl RS H_cong;
|
|
14 |
|
|
15 |
(*Restriction to domain A. If r is well-founded over A then wf(r)*)
|
|
16 |
val [prem1,prem2] = goalw WF.thy [wf_def]
|
|
17 |
"[| r <= Sigma(A, %u.A); \
|
|
18 |
\ !!x P. [| ! x. (! y. <y,x> : r --> P(y)) --> P(x); x:A |] ==> P(x) |] \
|
|
19 |
\ ==> wf(r)";
|
|
20 |
by (strip_tac 1);
|
|
21 |
by (rtac allE 1);
|
|
22 |
by (assume_tac 1);
|
|
23 |
by (best_tac (HOL_cs addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1);
|
|
24 |
val wfI = result();
|
|
25 |
|
|
26 |
val major::prems = goalw WF.thy [wf_def]
|
|
27 |
"[| wf(r); \
|
|
28 |
\ !!x.[| ! y. <y,x>: r --> P(y) |] ==> P(x) \
|
|
29 |
\ |] ==> P(a)";
|
|
30 |
by (rtac (major RS spec RS mp RS spec) 1);
|
|
31 |
by (fast_tac (HOL_cs addEs prems) 1);
|
|
32 |
val wf_induct = result();
|
|
33 |
|
|
34 |
(*Perform induction on i, then prove the wf(r) subgoal using prems. *)
|
|
35 |
fun wf_ind_tac a prems i =
|
|
36 |
EVERY [res_inst_tac [("a",a)] wf_induct i,
|
|
37 |
rename_last_tac a ["1"] (i+1),
|
|
38 |
ares_tac prems i];
|
|
39 |
|
|
40 |
val prems = goal WF.thy "[| wf(r); <a,x>:r; <x,a>:r |] ==> P";
|
|
41 |
by (subgoal_tac "! x. <a,x>:r --> <x,a>:r --> P" 1);
|
|
42 |
by (fast_tac (HOL_cs addIs prems) 1);
|
|
43 |
by (wf_ind_tac "a" prems 1);
|
|
44 |
by (fast_tac set_cs 1);
|
|
45 |
val wf_anti_sym = result();
|
|
46 |
|
|
47 |
val prems = goal WF.thy "[| wf(r); <a,a>: r |] ==> P";
|
|
48 |
by (rtac wf_anti_sym 1);
|
|
49 |
by (REPEAT (resolve_tac prems 1));
|
|
50 |
val wf_anti_refl = result();
|
|
51 |
|
|
52 |
(*transitive closure of a WF relation is WF!*)
|
|
53 |
val [prem] = goal WF.thy "wf(r) ==> wf(r^+)";
|
|
54 |
by (rewtac wf_def);
|
|
55 |
by (strip_tac 1);
|
|
56 |
(*must retain the universal formula for later use!*)
|
|
57 |
by (rtac allE 1 THEN assume_tac 1);
|
|
58 |
by (etac mp 1);
|
|
59 |
by (res_inst_tac [("a","x")] (prem RS wf_induct) 1);
|
|
60 |
by (rtac (impI RS allI) 1);
|
|
61 |
by (etac tranclE 1);
|
|
62 |
by (fast_tac HOL_cs 1);
|
|
63 |
by (fast_tac HOL_cs 1);
|
|
64 |
val wf_trancl = result();
|
|
65 |
|
|
66 |
|
|
67 |
(** cut **)
|
|
68 |
|
|
69 |
(*This rewrite rule works upon formulae; thus it requires explicit use of
|
|
70 |
H_cong to expose the equality*)
|
|
71 |
goalw WF.thy [cut_def]
|
|
72 |
"(cut(f,r,x) = cut(g,r,x)) = (!y. <y,x>:r --> f(y)=g(y))";
|
|
73 |
by(simp_tac (HOL_ss addsimps [expand_fun_eq]
|
|
74 |
setloop (split_tac [expand_if])) 1);
|
|
75 |
val cut_cut_eq = result();
|
|
76 |
|
|
77 |
goalw WF.thy [cut_def] "!!x. <x,a>:r ==> cut(f,r,a)(x) = f(x)";
|
|
78 |
by(asm_simp_tac HOL_ss 1);
|
|
79 |
val cut_apply = result();
|
|
80 |
|
|
81 |
|
|
82 |
(*** is_recfun ***)
|
|
83 |
|
|
84 |
goalw WF.thy [is_recfun_def,cut_def]
|
|
85 |
"!!f. [| is_recfun(r,a,H,f); ~<b,a>:r |] ==> f(b) = (@z.True)";
|
|
86 |
by (etac ssubst 1);
|
|
87 |
by(asm_simp_tac HOL_ss 1);
|
|
88 |
val is_recfun_undef = result();
|
|
89 |
|
|
90 |
(*eresolve_tac transD solves <a,b>:r using transitivity AT MOST ONCE
|
|
91 |
mp amd allE instantiate induction hypotheses*)
|
|
92 |
fun indhyp_tac hyps =
|
|
93 |
ares_tac (TrueI::hyps) ORELSE'
|
|
94 |
(cut_facts_tac hyps THEN'
|
|
95 |
DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
|
|
96 |
eresolve_tac [transD, mp, allE]));
|
|
97 |
|
|
98 |
(*** NOTE! some simplifications need a different finish_tac!! ***)
|
|
99 |
fun indhyp_tac hyps =
|
|
100 |
resolve_tac (TrueI::refl::hyps) ORELSE'
|
|
101 |
(cut_facts_tac hyps THEN'
|
|
102 |
DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
|
|
103 |
eresolve_tac [transD, mp, allE]));
|
|
104 |
val wf_super_ss = HOL_ss setsolver indhyp_tac;
|
|
105 |
|
|
106 |
val prems = goalw WF.thy [is_recfun_def,cut_def]
|
|
107 |
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,b,H,g) |] ==> \
|
|
108 |
\ <x,a>:r --> <x,b>:r --> f(x)=g(x)";
|
|
109 |
by (cut_facts_tac prems 1);
|
|
110 |
by (etac wf_induct 1);
|
|
111 |
by (REPEAT (rtac impI 1 ORELSE etac ssubst 1));
|
|
112 |
by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1);
|
|
113 |
val is_recfun_equal_lemma = result();
|
|
114 |
val is_recfun_equal = standard (is_recfun_equal_lemma RS mp RS mp);
|
|
115 |
|
|
116 |
|
|
117 |
val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def]
|
|
118 |
"[| wf(r); trans(r); \
|
|
119 |
\ is_recfun(r,a,H,f); is_recfun(r,b,H,g); <b,a>:r |] ==> \
|
|
120 |
\ cut(f,r,b) = g";
|
|
121 |
val gundef = recgb RS is_recfun_undef
|
|
122 |
and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal)));
|
|
123 |
by (cut_facts_tac prems 1);
|
|
124 |
by (rtac ext 1);
|
|
125 |
by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]
|
|
126 |
setloop (split_tac [expand_if])) 1);
|
|
127 |
val is_recfun_cut = result();
|
|
128 |
|
|
129 |
(*** Main Existence Lemma -- Basic Properties of the_recfun ***)
|
|
130 |
|
|
131 |
val prems = goalw WF.thy [the_recfun_def]
|
|
132 |
"is_recfun(r,a,H,f) ==> is_recfun(r, a, H, the_recfun(r,a,H))";
|
|
133 |
by (res_inst_tac [("P", "is_recfun(r,a,H)")] selectI 1);
|
|
134 |
by (resolve_tac prems 1);
|
|
135 |
val is_the_recfun = result();
|
|
136 |
|
|
137 |
val prems = goal WF.thy
|
|
138 |
"[| wf(r); trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))";
|
|
139 |
by (cut_facts_tac prems 1);
|
|
140 |
by (wf_ind_tac "a" prems 1);
|
|
141 |
by (res_inst_tac [("f", "cut(%y. wftrec(r,y,H), r, a1)")] is_the_recfun 1);
|
|
142 |
by (rewrite_goals_tac [is_recfun_def, wftrec_def]);
|
|
143 |
by (rtac (cut_cut_eq RS ssubst) 1);
|
|
144 |
(*Applying the substitution: must keep the quantified assumption!!*)
|
|
145 |
by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac,
|
|
146 |
etac (mp RS ssubst), atac]);
|
|
147 |
by (fold_tac [is_recfun_def]);
|
|
148 |
by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1);
|
|
149 |
val unfold_the_recfun = result();
|
|
150 |
|
|
151 |
|
|
152 |
(*Beware incompleteness of unification!*)
|
|
153 |
val prems = goal WF.thy
|
|
154 |
"[| wf(r); trans(r); <c,a>:r; <c,b>:r |] \
|
|
155 |
\ ==> the_recfun(r,a,H,c) = the_recfun(r,b,H,c)";
|
|
156 |
by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1));
|
|
157 |
val the_recfun_equal = result();
|
|
158 |
|
|
159 |
val prems = goal WF.thy
|
|
160 |
"[| wf(r); trans(r); <b,a>:r |] \
|
|
161 |
\ ==> cut(the_recfun(r,a,H),r,b) = the_recfun(r,b,H)";
|
|
162 |
by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1));
|
|
163 |
val the_recfun_cut = result();
|
|
164 |
|
|
165 |
(*** Unfolding wftrec ***)
|
|
166 |
|
|
167 |
goalw WF.thy [wftrec_def]
|
|
168 |
"!!r. [| wf(r); trans(r) |] ==> \
|
|
169 |
\ wftrec(r,a,H) = H(a, cut(%x.wftrec(r,x,H), r, a))";
|
|
170 |
by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun),
|
|
171 |
REPEAT o atac, rtac H_cong1]);
|
|
172 |
by (asm_simp_tac (HOL_ss addsimps [cut_cut_eq,the_recfun_cut]) 1);
|
|
173 |
val wftrec = result();
|
|
174 |
|
|
175 |
(*Unused but perhaps interesting*)
|
|
176 |
val prems = goal WF.thy
|
|
177 |
"[| wf(r); trans(r); !!f x. H(x, cut(f,r,x)) = H(x,f) |] ==> \
|
|
178 |
\ wftrec(r,a,H) = H(a, %x.wftrec(r,x,H))";
|
|
179 |
by (rtac (wftrec RS trans) 1);
|
|
180 |
by (REPEAT (resolve_tac prems 1));
|
|
181 |
val wftrec2 = result();
|
|
182 |
|
|
183 |
(** Removal of the premise trans(r) **)
|
|
184 |
|
|
185 |
goalw WF.thy [wfrec_def]
|
|
186 |
"!!r. wf(r) ==> wfrec(r,a,H) = H(a, cut(%x.wfrec(r,x,H), r, a))";
|
|
187 |
by (etac (wf_trancl RS wftrec RS ssubst) 1);
|
|
188 |
by (rtac trans_trancl 1);
|
|
189 |
by (rtac (refl RS H_cong) 1); (*expose the equality of cuts*)
|
|
190 |
by (simp_tac (HOL_ss addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1);
|
|
191 |
val wfrec = result();
|
|
192 |
|
|
193 |
(*This form avoids giant explosions in proofs. NOTE USE OF == *)
|
|
194 |
val rew::prems = goal WF.thy
|
|
195 |
"[| !!x. f(x)==wfrec(r,x,H); wf(r) |] ==> f(a) = H(a, cut(%x.f(x),r,a))";
|
|
196 |
by (rewtac rew);
|
|
197 |
by (REPEAT (resolve_tac (prems@[wfrec]) 1));
|
|
198 |
val def_wfrec = result();
|