--- a/HOL.ML Wed Apr 06 16:31:06 1994 +0200
+++ b/HOL.ML Tue Apr 19 10:50:00 1994 +0200
@@ -125,7 +125,8 @@
(** True **)
-val TrueI = refl RS (True_def RS iffD2);
+val TrueI = prove_goalw HOL.thy [True_def] "True"
+ (fn _ => [rtac refl 1]);
val eqTrueI = prove_goal HOL.thy "P ==> P=True"
(fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]);
@@ -135,13 +136,11 @@
(** Universal quantifier **)
-val allI = prove_goal HOL.thy "(!!x::'a. P(x)) ==> !x. P(x)"
- (fn [asm] => [rtac (All_def RS ssubst) 1, rtac (asm RS (eqTrueI RS ext)) 1]);
+val allI = prove_goalw HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)"
+ (fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]);
-val spec = prove_goal HOL.thy "! x::'a.P(x) ==> P(x)"
- (fn prems =>
- [ rtac eqTrueE 1,
- resolve_tac (prems RL [All_def RS subst] RL [fun_cong]) 1 ]);
+val spec = prove_goalw HOL.thy [All_def] "! x::'a.P(x) ==> P(x)"
+ (fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]);
val allE = prove_goal HOL.thy "[| !x.P(x); P(x) ==> R |] ==> R"
(fn major::prems=>
@@ -157,7 +156,7 @@
before quantifiers! **)
val FalseE = prove_goal HOL.thy "False ==> P"
- (fn prems => [rtac spec 1, rtac (False_def RS subst) 1, resolve_tac prems 1]);
+ (fn prems => [rtac spec 1, fold_tac [False_def], resolve_tac prems 1]);
val False_neq_True = prove_goal HOL.thy "False=True ==> P"
(fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]);
@@ -165,14 +164,11 @@
(** Negation **)
-val notI = prove_goal HOL.thy "(P ==> False) ==> ~P"
- (fn prems=> [rtac (not_def RS ssubst) 1, rtac impI 1, eresolve_tac prems 1]);
+val notI = prove_goalw HOL.thy [not_def] "(P ==> False) ==> ~P"
+ (fn prems=> [rtac impI 1, eresolve_tac prems 1]);
-val notE = prove_goal HOL.thy "[| ~P; P |] ==> R"
- (fn prems =>
- [rtac (mp RS FalseE) 1,
- resolve_tac prems 2, rtac (not_def RS subst) 1,
- resolve_tac prems 1]);
+val notE = prove_goalw HOL.thy [not_def] "[| ~P; P |] ==> R"
+ (fn prems => [rtac (mp RS FalseE) 1, REPEAT(resolve_tac prems 1)]);
(** Implication **)
@@ -194,33 +190,27 @@
(** Existential quantifier **)
-val exI = prove_goal HOL.thy "P(x) ==> ? x::'a.P(x)"
- (fn prems =>
- [rtac (selectI RS (Ex_def RS ssubst)) 1,
- resolve_tac prems 1]);
+val exI = prove_goalw HOL.thy [Ex_def] "P(x) ==> ? x::'a.P(x)"
+ (fn prems => [rtac selectI 1, resolve_tac prems 1]);
-val exE = prove_goal HOL.thy "[| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q"
- (fn prems =>
- [resolve_tac prems 1, res_inst_tac [("P","%C.C(P)")] subst 1,
- rtac Ex_def 1, resolve_tac prems 1]);
+val exE = prove_goalw HOL.thy [Ex_def]
+ "[| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q"
+ (fn prems => [REPEAT(resolve_tac prems 1)]);
(** Conjunction **)
-val conjI = prove_goal HOL.thy "[| P; Q |] ==> P&Q"
+val conjI = prove_goalw HOL.thy [and_def] "[| P; Q |] ==> P&Q"
(fn prems =>
- [ (rtac (and_def RS ssubst) 1),
- (REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)) ]);
+ [REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]);
-val conjunct1 = prove_goal HOL.thy "[| P & Q |] ==> P"
+val conjunct1 = prove_goalw HOL.thy [and_def] "[| P & Q |] ==> P"
(fn prems =>
- [ (resolve_tac (prems RL [and_def RS subst] RL [spec] RL [mp]) 1),
- (REPEAT(ares_tac [impI] 1)) ]);
+ [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
-val conjunct2 = prove_goal HOL.thy "[| P & Q |] ==> Q"
+val conjunct2 = prove_goalw HOL.thy [and_def] "[| P & Q |] ==> Q"
(fn prems =>
- [ (resolve_tac (prems RL [and_def RS subst] RL [spec] RL [mp]) 1),
- (REPEAT(ares_tac [impI] 1)) ]);
+ [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
val conjE = prove_goal HOL.thy "[| P&Q; [| P; Q |] ==> R |] ==> R"
(fn prems =>
@@ -229,19 +219,15 @@
(** Disjunction *)
-val disjI1 = prove_goal HOL.thy "P ==> P|Q"
- (fn [prem] =>
- [rtac (or_def RS ssubst) 1,
- REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
+val disjI1 = prove_goalw HOL.thy [or_def] "P ==> P|Q"
+ (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
-val disjI2 = prove_goal HOL.thy "Q ==> P|Q"
- (fn [prem] =>
- [rtac (or_def RS ssubst) 1,
- REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
+val disjI2 = prove_goalw HOL.thy [or_def] "Q ==> P|Q"
+ (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
-val disjE = prove_goal HOL.thy "[| P | Q; P ==> R; Q ==> R |] ==> R"
+val disjE = prove_goalw HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R"
(fn [a1,a2,a3] =>
- [rtac (mp RS mp) 1, rtac spec 1, rtac (or_def RS subst) 1, rtac a1 1,
+ [rtac (mp RS mp) 1, rtac spec 1, rtac a1 1,
rtac (a2 RS impI) 1, atac 1, rtac (a3 RS impI) 1, atac 1]);
(** CCONTR -- classical logic **)
@@ -249,14 +235,18 @@
val ccontr = prove_goal HOL.thy "(~P ==> False) ==> P"
(fn prems =>
[rtac (True_or_False RS (disjE RS eqTrueE)) 1, atac 1,
- rtac spec 1, rtac (False_def RS subst) 1, resolve_tac prems 1,
- rtac ssubst 1, atac 1, rtac (not_def RS ssubst) 1,
+ rtac spec 1, fold_tac [False_def], resolve_tac prems 1,
+ rtac ssubst 1, atac 1, rewtac not_def,
REPEAT (ares_tac [impI] 1) ]);
-val classical = prove_goal HOL.thy "(~P ==> P) ==> P"
+val ccontr = prove_goalw HOL.thy [not_def] "(~P ==> False) ==> P"
(fn prems =>
- [rtac ccontr 1,
- REPEAT (ares_tac (prems@[notE]) 1)]);
+ [rtac (True_or_False RS (disjE RS eqTrueE)) 1, atac 1,
+ rtac spec 1, fold_tac [False_def], resolve_tac prems 1,
+ rtac ssubst 1, atac 1, REPEAT (ares_tac [impI] 1) ]);
+
+val classical = prove_goal HOL.thy "(~P ==> P) ==> P"
+ (fn prems => [rtac ccontr 1, REPEAT (ares_tac (prems@[notE]) 1)]);
(*Double negation law*)
@@ -267,17 +257,15 @@
(** Unique existence **)
-val ex1I = prove_goal HOL.thy
+val ex1I = prove_goalw HOL.thy [Ex1_def]
"[| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)"
(fn prems =>
- [ (rtac (Ex1_def RS ssubst) 1),
- (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]);
+ [REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]);
-val ex1E = prove_goal HOL.thy
+val ex1E = prove_goalw HOL.thy [Ex1_def]
"[| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R"
(fn major::prems =>
- [ (resolve_tac ([major] RL [Ex1_def RS subst] RL [exE]) 1),
- (REPEAT (etac conjE 1 ORELSE ares_tac prems 1)) ]);
+ [rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]);
(** Select: Hilbert's Epsilon-operator **)