--- a/Prod.thy Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,66 +0,0 @@
-(* Title: HOL/Prod.thy
- ID: Prod.thy,v 1.5 1994/08/19 09:04:27 lcp Exp
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1992 University of Cambridge
-
-Ordered Pairs and the Cartesian product type.
-The unit type.
-*)
-
-Prod = Fun +
-
-(** Products **)
-
-(* type definition *)
-
-consts
- Pair_Rep :: "['a, 'b] => ['a, 'b] => bool"
-
-defs
- Pair_Rep_def "Pair_Rep == (%a b. %x y. x=a & y=b)"
-
-subtype (Prod)
- ('a, 'b) "*" (infixr 20)
- = "{f. ? a b. f = Pair_Rep(a::'a, b::'b)}"
-
-
-(* abstract constants and syntax *)
-
-consts
- fst :: "'a * 'b => 'a"
- snd :: "'a * 'b => 'b"
- split :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
- prod_fun :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
- Pair :: "['a, 'b] => 'a * 'b"
- Sigma :: "['a set, 'a => 'b set] => ('a * 'b) set"
-
-syntax
- "@Tuple" :: "args => 'a * 'b" ("(1<_>)")
-
-translations
- "<x, y, z>" == "<x, <y, z>>"
- "<x, y>" == "Pair(x, y)"
- "<x>" => "x"
-
-defs
- Pair_def "Pair(a, b) == Abs_Prod(Pair_Rep(a, b))"
- fst_def "fst(p) == @a. ? b. p = <a, b>"
- snd_def "snd(p) == @b. ? a. p = <a, b>"
- split_def "split(c, p) == c(fst(p), snd(p))"
- prod_fun_def "prod_fun(f, g) == split(%x y.<f(x), g(y)>)"
- Sigma_def "Sigma(A, B) == UN x:A. UN y:B(x). {<x, y>}"
-
-
-
-(** Unit **)
-
-subtype (Unit)
- unit = "{p. p = True}"
-
-consts
- Unity :: "unit" ("<>")
-
-defs
- Unity_def "Unity == Abs_Unit(True)"
-
-end