Prod.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/Prod.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,66 +0,0 @@
-(*  Title:      HOL/Prod.thy
-    ID:         Prod.thy,v 1.5 1994/08/19 09:04:27 lcp Exp
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-Ordered Pairs and the Cartesian product type.
-The unit type.
-*)
-
-Prod = Fun +
-
-(** Products **)
-
-(* type definition *)
-
-consts
-  Pair_Rep      :: "['a, 'b] => ['a, 'b] => bool"
-
-defs
-  Pair_Rep_def  "Pair_Rep == (%a b. %x y. x=a & y=b)"
-
-subtype (Prod)
-  ('a, 'b) "*"          (infixr 20)
-    = "{f. ? a b. f = Pair_Rep(a::'a, b::'b)}"
-
-
-(* abstract constants and syntax *)
-
-consts
-  fst           :: "'a * 'b => 'a"
-  snd           :: "'a * 'b => 'b"
-  split         :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
-  prod_fun      :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
-  Pair          :: "['a, 'b] => 'a * 'b"
-  Sigma         :: "['a set, 'a => 'b set] => ('a * 'b) set"
-
-syntax
-  "@Tuple"      :: "args => 'a * 'b"            ("(1<_>)")
-
-translations
-  "<x, y, z>"   == "<x, <y, z>>"
-  "<x, y>"      == "Pair(x, y)"
-  "<x>"         => "x"
-
-defs
-  Pair_def      "Pair(a, b) == Abs_Prod(Pair_Rep(a, b))"
-  fst_def       "fst(p) == @a. ? b. p = <a, b>"
-  snd_def       "snd(p) == @b. ? a. p = <a, b>"
-  split_def     "split(c, p) == c(fst(p), snd(p))"
-  prod_fun_def  "prod_fun(f, g) == split(%x y.<f(x), g(y)>)"
-  Sigma_def     "Sigma(A, B) == UN x:A. UN y:B(x). {<x, y>}"
-
-
-
-(** Unit **)
-
-subtype (Unit)
-  unit = "{p. p = True}"
-
-consts
-  Unity         :: "unit"                       ("<>")
-
-defs
-  Unity_def     "Unity == Abs_Unit(True)"
-
-end