(* Title: Substitutions/unifier.ML
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
For unifier.thy.
Properties of unifiers.
Cases for partial correctness of algorithm and conditions for termination.
*)
open Unifier;
val unify_defs =
[Idem_def,Unifier_def,MoreGeneral_def,MGUnifier_def,MGIUnifier_def];
(**** Unifiers ****)
goalw Unifier.thy [Unifier_def] "Unifier(s,t,u) = (t <| s = u <| s)";
by (rtac refl 1);
val Unifier_iff = result();
goal Unifier.thy
"Unifier(s,Comb(t,u),Comb(v,w)) --> Unifier(s,t,v) & Unifier(s,u,w)";
by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
val Unifier_Comb = result() RS mp RS conjE;
goal Unifier.thy
"~v : vars_of(t) --> ~v : vars_of(u) -->Unifier(s,t,u) --> \
\ Unifier(<v,r>#s,t,u)";
by (simp_tac (subst_ss addsimps [Unifier_iff,repl_invariance]) 1);
val Cons_Unifier = result() RS mp RS mp RS mp;
(**** Most General Unifiers ****)
goalw Unifier.thy [MoreGeneral_def] "r >> s = (EX q. s =s= r <> q)";
by (rtac refl 1);
val MoreGen_iff = result();
goal Unifier.thy "Nil >> s";
by (simp_tac (subst_ss addsimps [MoreGen_iff]) 1);
by (fast_tac (set_cs addIs [refl RS subst_refl]) 1);
val MoreGen_Nil = result();
goalw Unifier.thy unify_defs
"MGUnifier(s,t,u) = (ALL r.Unifier(r,t,u) = s >> r)";
by (REPEAT (ares_tac [iffI,allI] 1 ORELSE
eresolve_tac [conjE,allE,mp,exE,ssubst_subst2] 1));
by (asm_simp_tac (subst_ss addsimps [subst_comp]) 1);
by (fast_tac (set_cs addIs [comp_Nil RS sym RS subst_refl]) 1);
val MGU_iff = result();
val [prem] = goal Unifier.thy
"~ Var(v) <: t ==> MGUnifier(<v,t>#Nil,Var(v),t)";
by (simp_tac (subst_ss addsimps [MGU_iff,MoreGen_iff,Unifier_iff]) 1);
by (REPEAT_SOME (step_tac set_cs));
by (etac subst 1);
by (etac ssubst_subst2 2);
by (rtac (Cons_trivial RS subst_sym) 1);
by (simp_tac (subst_ss addsimps [prem RS Var_not_occs,Var_subst]) 1);
val MGUnifier_Var = result();
(**** Most General Idempotent Unifiers ****)
goal Unifier.thy "r <> r =s= r --> s =s= r <> q --> r <> s =s= s";
by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
val MGIU_iff_lemma = result() RS mp RS mp;
goalw Unifier.thy unify_defs
"MGIUnifier(s,t,u) = \
\ (Idem(s) & Unifier(s,t,u) & (ALL r.Unifier(r,t,u) --> s<>r=s=r))";
by (fast_tac (set_cs addEs [subst_sym,MGIU_iff_lemma]) 1);
val MGIU_iff = result();
(**** Idempotence ****)
goalw Unifier.thy unify_defs "Idem(s) = (s <> s =s= s)";
by (rtac refl 1);
val raw_Idem_iff = result();
goal Unifier.thy "Idem(s) = (sdom(s) Int srange(s) = {})";
by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp,
invariance,dom_range_disjoint])1);
val Idem_iff = result();
goal Unifier.thy "Idem(Nil)";
by (simp_tac (subst_ss addsimps [raw_Idem_iff,refl RS subst_refl]) 1);
val Idem_Nil = result();
goal Unifier.thy "~ (Var(v) <: t) --> Idem(<v,t>#Nil)";
by (simp_tac (subst_ss addsimps [Var_subst,vars_iff_occseq,Idem_iff,srange_iff]
setloop (split_tac [expand_if])) 1);
by (fast_tac set_cs 1);
val Var_Idem = result() RS mp;
val [prem] = goalw Unifier.thy [Idem_def]
"Idem(r) ==> Unifier(s,t <| r,u <| r) --> Unifier(r <> s,t <| r,u <| r)";
by (simp_tac (subst_ss addsimps
[Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
val Unifier_Idem_subst = result() RS mp;
val [prem] = goal Unifier.thy
"r <> s =s= s ==> Unifier(s,t,u) --> Unifier(s,t <| r,u <| r)";
by (simp_tac (subst_ss addsimps
[Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
val Unifier_comp_subst = result() RS mp;
(*** The domain of a MGIU is a subset of the variables in the terms ***)
(*** NB this and one for range are only needed for termination ***)
val [prem] = goal Unifier.thy
"~ vars_of(Var(x) <| r) = vars_of(Var(x) <| s) ==> ~r =s= s";
by (rtac (prem RS contrapos) 1);
by (fast_tac (set_cs addEs [subst_subst2]) 1);
val lemma_lemma = result();
val prems = goal Unifier.thy
"x : sdom(s) --> ~x : srange(s) --> \
\ ~vars_of(Var(x) <| s<> <x,Var(x)>#s) = \
\ vars_of(Var(x) <| <x,Var(x)>#s)";
by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
by (REPEAT (resolve_tac [impI,disjI2] 1));
by(res_inst_tac [("x","x")] exI 1);
br conjI 1;
by (asm_simp_tac (subst_ss addsimps [Var_elim,subst_comp,repl_invariance]) 1);
by (asm_simp_tac (subst_ss addsimps [Var_subst]) 1);
val MGIU_sdom_lemma = result() RS mp RS mp RS lemma_lemma RS notE;;
goal Unifier.thy "MGIUnifier(s,t,u) --> sdom(s) <= vars_of(t) Un vars_of(u)";
by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
by (asm_simp_tac (subst_ss addsimps [MGIU_iff,Idem_iff,subset_iff]) 1);
by (safe_tac set_cs);
by (eresolve_tac ([spec] RL [impE]) 1);
by (rtac Cons_Unifier 1);
by (ALLGOALS (fast_tac (set_cs addIs [Cons_Unifier,MGIU_sdom_lemma])));
val MGIU_sdom = result() RS mp;
(*** The range of a MGIU is a subset of the variables in the terms ***)
val prems = goal HOL.thy "P = Q ==> (~P) = (~Q)";
by (simp_tac (set_ss addsimps prems) 1);
val not_cong = result();
val prems = goal Unifier.thy
"~w=x --> x : vars_of(Var(w) <| s) --> w : sdom(s) --> ~w : srange(s) --> \
\ ~vars_of(Var(w) <| s<> <x,Var(w)>#s) = \
\ vars_of(Var(w) <| <x,Var(w)>#s)";
by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
by (REPEAT (resolve_tac [impI,disjI1] 1));
by(res_inst_tac [("x","w")] exI 1);
by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_elim,subst_comp,
vars_var_iff RS not_cong RS iffD2 RS repl_invariance]) ));
by (fast_tac (set_cs addIs [Var_in_subst]) 1);
val MGIU_srange_lemma =result() RS mp RS mp RS mp RS mp RS lemma_lemma RS notE;
goal Unifier.thy "MGIUnifier(s,t,u) --> srange(s) <= vars_of(t) Un vars_of(u)";
by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
by (asm_simp_tac (subst_ss addsimps [MGIU_iff,srange_iff,subset_iff]) 1);
by (simp_tac (subst_ss addsimps [Idem_iff]) 1);
by (safe_tac set_cs);
by (eresolve_tac ([spec] RL [impE]) 1);
by (rtac Cons_Unifier 1);
by (imp_excluded_middle_tac "w=ta" 4);
by (fast_tac (set_cs addEs [MGIU_srange_lemma]) 5);
by (ALLGOALS (fast_tac (set_cs addIs [Var_elim2])));
val MGIU_srange = result() RS mp;
(*************** Correctness of a simple unification algorithm ***************)
(* *)
(* fun unify Const(m) Const(n) = if m=n then Nil else Fail *)
(* | unify Const(m) _ = Fail *)
(* | unify Var(v) t = if Var(v)<:t then Fail else <v,t>#Nil *)
(* | unify Comb(t,u) Const(n) = Fail *)
(* | unify Comb(t,u) Var(v) = if Var(v) <: Comb(t,u) then Fail *)
(* else <v,Comb(t,u>#Nil *)
(* | unify Comb(t,u) Comb(v,w) = let s = unify t v *)
(* in if s=Fail then Fail *)
(* else unify (u<|s) (w<|s); *)
(**** Cases for the partial correctness of the algorithm ****)
goalw Unifier.thy unify_defs "MGIUnifier(s,t,u) = MGIUnifier(s,u,t)";
by (safe_tac (HOL_cs addSEs ([sym]@([spec] RL [mp]))));
val Unify_comm = result();
goal Unifier.thy "MGIUnifier(Nil,Const(n),Const(n))";
by (simp_tac (subst_ss addsimps
[MGIU_iff,MGU_iff,Unifier_iff,subst_eq_iff,Idem_Nil]) 1);
val Unify1 = result();
goal Unifier.thy "~m=n --> (ALL l.~Unifier(l,Const(m),Const(n)))";
by (simp_tac (subst_ss addsimps[Unifier_iff]) 1);
val Unify2 = result() RS mp;
val [prem] = goalw Unifier.thy [MGIUnifier_def]
"~Var(v) <: t ==> MGIUnifier(<v,t>#Nil,Var(v),t)";
by (fast_tac (HOL_cs addSIs [prem RS MGUnifier_Var,prem RS Var_Idem]) 1);
val Unify3 = result();
val [prem] = goal Unifier.thy "Var(v) <: t ==> (ALL l.~Unifier(l,Var(v),t))";
by (simp_tac (subst_ss addsimps
[Unifier_iff,prem RS subst_mono RS occs_irrefl2]) 1);
val Unify4 = result();
goal Unifier.thy "ALL l.~Unifier(l,Const(m),Comb(t,u))";
by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
val Unify5 = result();
goal Unifier.thy
"(ALL l.~Unifier(l,t,v)) --> (ALL l.~Unifier(l,Comb(t,u),Comb(v,w)))";
by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
val Unify6 = result() RS mp;
goal Unifier.thy "MGIUnifier(s,t,v) --> (ALL l.~Unifier(l,u <| s,w <| s)) --> \
\ (ALL l.~Unifier(l,Comb(t,u),Comb(v,w)))";
by (simp_tac (subst_ss addsimps [MGIU_iff]) 1);
by (fast_tac (set_cs addIs [Unifier_comp_subst] addSEs [Unifier_Comb]) 1);
val Unify7 = result() RS mp RS mp;
val [p1,p2,p3] = goal Unifier.thy
"[| Idem(r); Unifier(s,t <| r,u <| r); \
\ (! q.Unifier(q,t <| r,u <| r) --> s <> q =s= q) |] ==> \
\ Idem(r <> s)";
by (cut_facts_tac [p1,
p2 RS (p1 RS Unifier_Idem_subst RS (p3 RS spec RS mp))] 1);
by (REPEAT_SOME (etac rev_mp));
by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp]) 1);
val Unify8_lemma1 = result();
val [p1,p2,p3,p4] = goal Unifier.thy
"[| Unifier(q,t,v); Unifier(q,u,w); (! q.Unifier(q,t,v) --> r <> q =s= q); \
\ (! q.Unifier(q,u <| r,w <| r) --> s <> q =s= q) |] ==> \
\ r <> s <> q =s= q";
val pp = p1 RS (p3 RS spec RS mp);
by (cut_facts_tac [pp,
p2 RS (pp RS Unifier_comp_subst) RS (p4 RS spec RS mp)] 1);
by (REPEAT_SOME (etac rev_mp));
by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
val Unify8_lemma2 = result();
goal Unifier.thy "MGIUnifier(r,t,v) --> MGIUnifier(s,u <| r,w <| r) --> \
\ MGIUnifier(r <> s,Comb(t,u),Comb(v,w))";
by (simp_tac (subst_ss addsimps [MGIU_iff,subst_comp,comp_assoc]) 1);
by (safe_tac HOL_cs);
by (REPEAT (etac rev_mp 2));
by (simp_tac (subst_ss addsimps
[Unifier_iff,MGIU_iff,subst_comp,comp_assoc]) 2);
by (ALLGOALS (fast_tac (set_cs addEs
[Unifier_Comb,Unify8_lemma1,Unify8_lemma2])));
val Unify8 = result();
(********************** Termination of the algorithm *************************)
(* *)
(*UWFD is a well-founded relation that orders the 2 recursive calls in unify *)
(* NB well-foundedness of UWFD isn't proved *)
goalw Unifier.thy [UWFD_def] "UWFD(t,t',Comb(t,u),Comb(t',u'))";
by (simp_tac subst_ss 1);
by (fast_tac set_cs 1);
val UnifyWFD1 = result();
val [prem] = goal Unifier.thy
"MGIUnifier(s,t,t') ==> vars_of(u <| s) Un vars_of(u' <| s) <= \
\ vars_of(Comb(t,u)) Un vars_of(Comb(t',u'))";
by (subgoal_tac "vars_of(u <| s) Un vars_of(u' <| s) <= \
\ srange(s) Un vars_of(u) Un srange(s) Un vars_of(u')" 1);
by (etac subset_trans 1);
by (ALLGOALS (simp_tac (subst_ss addsimps [Var_intro,subset_iff])));
by (ALLGOALS (fast_tac (set_cs addDs
[Var_intro,prem RS MGIU_srange RS subsetD])));
val UWFD2_lemma1 = result();
val [major,minor] = goal Unifier.thy
"[| MGIUnifier(s,t,t'); ~ u <| s = u |] ==> \
\ ~ vars_of(u <| s) Un vars_of(u' <| s) = \
\ (vars_of(t) Un vars_of(u)) Un (vars_of(t') Un vars_of(u'))";
by (cut_facts_tac
[major RS (MGIU_iff RS iffD1) RS conjunct1 RS (Idem_iff RS iffD1)] 1);
by (rtac (minor RS subst_not_empty RS exE) 1);
by (rtac (make_elim ((major RS MGIU_sdom) RS subsetD)) 1 THEN assume_tac 1);
by (rtac (disjI2 RS (not_equal_iff RS iffD2)) 1);
by (REPEAT (etac rev_mp 1));
by (asm_simp_tac subst_ss 1);
by (fast_tac (set_cs addIs [Var_elim2]) 1);
val UWFD2_lemma2 = result();
val [prem] = goalw Unifier.thy [UWFD_def]
"MGIUnifier(s,t,t') ==> UWFD(u <| s,u' <| s,Comb(t,u),Comb(t',u'))";
by (cut_facts_tac
[prem RS UWFD2_lemma1 RS (subseteq_iff_subset_eq RS iffD1)] 1);
by (imp_excluded_middle_tac "u <| s = u" 1);
by (simp_tac (set_ss addsimps [occs_Comb2] ) 1);
by (rtac impI 1 THEN etac subst 1 THEN assume_tac 1);
by (rtac impI 1);
by (rtac (conjI RS (ssubset_iff RS iffD2) RS disjI1) 1);
by (asm_simp_tac (set_ss addsimps [subseteq_iff_subset_eq]) 1);
by (asm_simp_tac subst_ss 1);
by (fast_tac (set_cs addDs [prem RS UWFD2_lemma2]) 1);
val UnifyWFD2 = result();