(* Title: HOL/ex/pl.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1994 TU Muenchen
Inductive definition of propositional logic.
*)
PL = Finite +
datatype
'a pl = false | var ('a) ("#_" [1000]) | "->" ('a pl,'a pl) (infixr 90)
consts
axK,axS,axDN:: "'a pl set"
ruleMP,thms :: "'a pl set => 'a pl set"
"|-" :: "['a pl set, 'a pl] => bool" (infixl 50)
"|=" :: "['a pl set, 'a pl] => bool" (infixl 50)
eval2 :: "['a pl, 'a set] => bool"
eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100)
hyps :: "['a pl, 'a set] => 'a pl set"
rules
(** Proof theory for propositional logic **)
axK_def "axK == {x . ? p q. x = p->q->p}"
axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}"
axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}"
(*the use of subsets simplifies the proof of monotonicity*)
ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}"
thms_def
"thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))"
conseq_def "H |- p == p : thms(H)"
sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])"
eval_def "tt[p] == eval2(p,tt)"
primrec eval2 pl
eval2_false "eval2(false) = (%x.False)"
eval2_var "eval2(#v) = (%tt.v:tt)"
eval2_imp "eval2(p->q) = (%tt.eval2(p,tt)-->eval2(q,tt))"
primrec hyps pl
hyps_false "hyps(false) = (%tt.{})"
hyps_var "hyps(#v) = (%tt.{if(v:tt, #v, #v->false)})"
hyps_imp "hyps(p->q) = (%tt.hyps(p,tt) Un hyps(q,tt))"
end