removed HOL_Lemmas structure and added qed_goal
authorclasohm
Fri, 09 Dec 1994 13:39:05 +0100
changeset 200 c480add17d52
parent 199 ad45e477926c
child 201 4d0545e93c0d
removed HOL_Lemmas structure and added qed_goal
HOL.ML
--- a/HOL.ML	Thu Dec 08 12:50:38 1994 +0100
+++ b/HOL.ML	Fri Dec 09 13:39:05 1994 +0100
@@ -9,75 +9,16 @@
 
 open HOL;
 
-signature HOL_LEMMAS =
-  sig
-  val allE	: thm
-  val all_dupE	: thm
-  val allI	: thm
-  val arg_cong	: thm
-  val fun_cong	: thm
-  val box_equals: thm
-  val case_tac	: string -> int -> tactic
-  val ccontr	: thm
-  val classical	: thm
-  val cong	: thm
-  val conjunct1	: thm
-  val conjunct2	: thm
-  val conjE	: thm
-  val conjI	: thm
-  val contrapos	: thm
-  val disjCI	: thm
-  val disjE	: thm
-  val disjI1	: thm
-  val disjI2	: thm
-  val eqTrueI	: thm
-  val eqTrueE	: thm
-  val ex1E	: thm
-  val ex1I	: thm
-  val exCI	: thm
-  val exI	: thm
-  val exE	: thm
-  val excluded_middle		: thm
-  val excluded_middle_tac	: string -> int -> tactic
-  val False_neq_True	: thm
-  val FalseE	: thm
-  val iffCE 	: thm
-  val iffD1	: thm
-  val iffD2	: thm
-  val iffE	: thm
-  val iffI	: thm
-  val impCE	: thm
-  val impE	: thm
-  val not_sym	: thm
-  val notE	: thm
-  val notI	: thm
-  val notnotD 	: thm
-  val rev_mp	: thm
-  val select_equality	: thm
-  val selectI2	: thm
-  val spec	: thm
-  val sstac	: thm list -> int -> tactic
-  val ssubst	: thm
-  val stac	: thm -> int -> tactic
-  val strip_tac	: int -> tactic
-  val sym	: thm
-  val trans	: thm
-  val TrueI	: thm
-  end;
-
-structure HOL_Lemmas : HOL_LEMMAS =
-
-struct
 
 (** Equality **)
 
-val sym = prove_goal HOL.thy "s=t ==> t=s"
+qed_goal "sym" HOL.thy "s=t ==> t=s"
  (fn prems => [cut_facts_tac prems 1, etac subst 1, rtac refl 1]);
 
 (*calling "standard" reduces maxidx to 0*)
 val ssubst = standard (sym RS subst);
 
-val trans = prove_goal HOL.thy "[| r=s; s=t |] ==> r=t"
+qed_goal "trans" HOL.thy "[| r=s; s=t |] ==> r=t"
  (fn prems =>
 	[rtac subst 1, resolve_tac prems 1, resolve_tac prems 1]);
 
@@ -85,7 +26,7 @@
 	a = b
 	|   |
 	c = d	*)
-val box_equals = prove_goal HOL.thy
+qed_goal "box_equals" HOL.thy
     "[| a=b;  a=c;  b=d |] ==> c=d"  
  (fn prems=>
   [ (rtac trans 1),
@@ -96,58 +37,58 @@
 (** Congruence rules for meta-application **)
 
 (*similar to AP_THM in Gordon's HOL*)
-val fun_cong = prove_goal HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)"
+qed_goal "fun_cong" HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)"
   (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
 
 (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)
-val arg_cong = prove_goal HOL.thy "x=y ==> f(x)=f(y)"
+qed_goal "arg_cong" HOL.thy "x=y ==> f(x)=f(y)"
  (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
 
-val cong = prove_goal HOL.thy
+qed_goal "cong" HOL.thy
    "[| f = g; (x::'a) = y |] ==> f(x) = g(y)"
  (fn [prem1,prem2] =>
    [rtac (prem1 RS subst) 1, rtac (prem2 RS subst) 1, rtac refl 1]);
 
 (** Equality of booleans -- iff **)
 
-val iffI = prove_goal HOL.thy
+qed_goal "iffI" HOL.thy
    "[| P ==> Q;  Q ==> P |] ==> P=Q"
  (fn prems=> [ (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1)) ]);
 
-val iffD2 = prove_goal HOL.thy "[| P=Q; Q |] ==> P"
+qed_goal "iffD2" HOL.thy "[| P=Q; Q |] ==> P"
  (fn prems =>
 	[rtac ssubst 1, resolve_tac prems 1, resolve_tac prems 1]);
 
 val iffD1 = sym RS iffD2;
 
-val iffE = prove_goal HOL.thy
+qed_goal "iffE" HOL.thy
     "[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R"
  (fn [p1,p2] => [REPEAT(ares_tac([p1 RS iffD2, p1 RS iffD1, p2, impI])1)]);
 
 (** True **)
 
-val TrueI = prove_goalw HOL.thy [True_def] "True"
+qed_goalw "TrueI" HOL.thy [True_def] "True"
   (fn _ => [rtac refl 1]);
 
-val eqTrueI  = prove_goal HOL.thy "P ==> P=True" 
+qed_goal "eqTrueI " HOL.thy "P ==> P=True" 
  (fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]);
 
-val eqTrueE = prove_goal HOL.thy "P=True ==> P" 
+qed_goal "eqTrueE" HOL.thy "P=True ==> P" 
  (fn prems => [REPEAT(resolve_tac (prems@[TrueI,iffD2]) 1)]);
 
 (** Universal quantifier **)
 
-val allI = prove_goalw HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)"
+qed_goalw "allI" HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)"
  (fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]);
 
-val spec = prove_goalw HOL.thy [All_def] "! x::'a.P(x) ==> P(x)"
+qed_goalw "spec" HOL.thy [All_def] "! x::'a.P(x) ==> P(x)"
  (fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]);
 
-val allE = prove_goal HOL.thy "[| !x.P(x);  P(x) ==> R |] ==> R"
+qed_goal "allE" HOL.thy "[| !x.P(x);  P(x) ==> R |] ==> R"
  (fn major::prems=>
   [ (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ]);
 
-val all_dupE = prove_goal HOL.thy 
+qed_goal "all_dupE" HOL.thy 
     "[| ! x.P(x);  [| P(x); ! x.P(x) |] ==> R |] ==> R"
  (fn prems =>
   [ (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ]);
@@ -156,31 +97,31 @@
 (** False ** Depends upon spec; it is impossible to do propositional logic
              before quantifiers! **)
 
-val FalseE = prove_goalw HOL.thy [False_def] "False ==> P"
+qed_goalw "FalseE" HOL.thy [False_def] "False ==> P"
  (fn [major] => [rtac (major RS spec) 1]);
 
-val False_neq_True = prove_goal HOL.thy "False=True ==> P"
+qed_goal "False_neq_True" HOL.thy "False=True ==> P"
  (fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]);
 
 
 (** Negation **)
 
-val notI = prove_goalw HOL.thy [not_def] "(P ==> False) ==> ~P"
+qed_goalw "notI" HOL.thy [not_def] "(P ==> False) ==> ~P"
  (fn prems=> [rtac impI 1, eresolve_tac prems 1]);
 
-val notE = prove_goalw HOL.thy [not_def] "[| ~P;  P |] ==> R"
+qed_goalw "notE" HOL.thy [not_def] "[| ~P;  P |] ==> R"
  (fn prems => [rtac (prems MRS mp RS FalseE) 1]);
 
 (** Implication **)
 
-val impE = prove_goal HOL.thy "[| P-->Q;  P;  Q ==> R |] ==> R"
+qed_goal "impE" HOL.thy "[| P-->Q;  P;  Q ==> R |] ==> R"
  (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
 
 (* Reduces Q to P-->Q, allowing substitution in P. *)
-val rev_mp = prove_goal HOL.thy "[| P;  P --> Q |] ==> Q"
+qed_goal "rev_mp" HOL.thy "[| P;  P --> Q |] ==> Q"
  (fn prems=>  [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
 
-val contrapos = prove_goal HOL.thy "[| ~Q;  P==>Q |] ==> ~P"
+qed_goal "contrapos" HOL.thy "[| ~Q;  P==>Q |] ==> ~P"
  (fn [major,minor]=> 
   [ (rtac (major RS notE RS notI) 1), 
     (etac minor 1) ]);
@@ -191,49 +132,49 @@
 
 (** Existential quantifier **)
 
-val exI = prove_goalw HOL.thy [Ex_def] "P(x) ==> ? x::'a.P(x)"
+qed_goalw "exI" HOL.thy [Ex_def] "P(x) ==> ? x::'a.P(x)"
  (fn prems => [rtac selectI 1, resolve_tac prems 1]);
 
-val exE = prove_goalw HOL.thy [Ex_def]
+qed_goalw "exE" HOL.thy [Ex_def]
   "[| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q"
   (fn prems => [REPEAT(resolve_tac prems 1)]);
 
 
 (** Conjunction **)
 
-val conjI = prove_goalw HOL.thy [and_def] "[| P; Q |] ==> P&Q"
+qed_goalw "conjI" HOL.thy [and_def] "[| P; Q |] ==> P&Q"
  (fn prems =>
   [REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]);
 
-val conjunct1 = prove_goalw HOL.thy [and_def] "[| P & Q |] ==> P"
+qed_goalw "conjunct1" HOL.thy [and_def] "[| P & Q |] ==> P"
  (fn prems =>
    [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
 
-val conjunct2 = prove_goalw HOL.thy [and_def] "[| P & Q |] ==> Q"
+qed_goalw "conjunct2" HOL.thy [and_def] "[| P & Q |] ==> Q"
  (fn prems =>
    [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
 
-val conjE = prove_goal HOL.thy "[| P&Q;  [| P; Q |] ==> R |] ==> R"
+qed_goal "conjE" HOL.thy "[| P&Q;  [| P; Q |] ==> R |] ==> R"
  (fn prems =>
 	 [cut_facts_tac prems 1, resolve_tac prems 1,
 	  etac conjunct1 1, etac conjunct2 1]);
 
 (** Disjunction *)
 
-val disjI1 = prove_goalw HOL.thy [or_def] "P ==> P|Q"
+qed_goalw "disjI1" HOL.thy [or_def] "P ==> P|Q"
  (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
 
-val disjI2 = prove_goalw HOL.thy [or_def] "Q ==> P|Q"
+qed_goalw "disjI2" HOL.thy [or_def] "Q ==> P|Q"
  (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
 
-val disjE = prove_goalw HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R"
+qed_goalw "disjE" HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R"
  (fn [a1,a2,a3] =>
 	[rtac (mp RS mp) 1, rtac spec 1, rtac a1 1,
 	 rtac (a2 RS impI) 1, assume_tac 1, rtac (a3 RS impI) 1, assume_tac 1]);
 
 (** CCONTR -- classical logic **)
 
-val classical = prove_goalw HOL.thy [not_def]  "(~P ==> P) ==> P"
+qed_goalw "classical" HOL.thy [not_def]  "(~P ==> P) ==> P"
  (fn [prem] =>
    [rtac (True_or_False RS (disjE RS eqTrueE)) 1,  assume_tac 1,
     rtac (impI RS prem RS eqTrueI) 1,
@@ -242,19 +183,19 @@
 val ccontr = FalseE RS classical;
 
 (*Double negation law*)
-val notnotD = prove_goal HOL.thy "~~P ==> P"
+qed_goal "notnotD" HOL.thy "~~P ==> P"
  (fn [major]=>
   [ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]);
 
 
 (** Unique existence **)
 
-val ex1I = prove_goalw HOL.thy [Ex1_def]
+qed_goalw "ex1I" HOL.thy [Ex1_def]
     "[| P(a);  !!x. P(x) ==> x=a |] ==> ?! x. P(x)"
  (fn prems =>
   [REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]);
 
-val ex1E = prove_goalw HOL.thy [Ex1_def]
+qed_goalw "ex1E" HOL.thy [Ex1_def]
     "[| ?! x.P(x);  !!x. [| P(x);  ! y. P(y) --> y=x |] ==> R |] ==> R"
  (fn major::prems =>
   [rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]);
@@ -263,13 +204,13 @@
 (** Select: Hilbert's Epsilon-operator **)
 
 (*Easier to apply than selectI: conclusion has only one occurrence of P*)
-val selectI2 = prove_goal HOL.thy
+qed_goal "selectI2" HOL.thy
     "[| P(a);  !!x. P(x) ==> Q(x) |] ==> Q(@x.P(x))"
  (fn prems => [ resolve_tac prems 1, 
 	        rtac selectI 1, 
 		resolve_tac prems 1 ]);
 
-val select_equality = prove_goal HOL.thy
+qed_goal "select_equality" HOL.thy
     "[| P(a);  !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a"
  (fn prems => [ rtac selectI2 1, 
 		REPEAT (ares_tac prems 1) ]);
@@ -277,13 +218,13 @@
 
 (** Classical intro rules for disjunction and existential quantifiers *)
 
-val disjCI = prove_goal HOL.thy "(~Q ==> P) ==> P|Q"
+qed_goal "disjCI" HOL.thy "(~Q ==> P) ==> P|Q"
  (fn prems=>
   [ (rtac classical 1),
     (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
     (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
 
-val excluded_middle = prove_goal HOL.thy "~P | P"
+qed_goal "excluded_middle" HOL.thy "~P | P"
  (fn _ => [ (REPEAT (ares_tac [disjCI] 1)) ]);
 
 (*For disjunctive case analysis*)
@@ -291,20 +232,20 @@
     res_inst_tac [("Q",sP)] (excluded_middle RS disjE);
 
 (*Classical implies (-->) elimination. *)
-val impCE = prove_goal HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R" 
+qed_goal "impCE" HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R" 
  (fn major::prems=>
   [ rtac (excluded_middle RS disjE) 1,
     REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1))]);
 
 (*Classical <-> elimination. *)
-val iffCE = prove_goal HOL.thy
+qed_goal "iffCE" HOL.thy
     "[| P=Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R"
  (fn major::prems =>
   [ (rtac (major RS iffE) 1),
     (REPEAT (DEPTH_SOLVE_1 
 	(eresolve_tac ([asm_rl,impCE,notE]@prems) 1))) ]);
 
-val exCI = prove_goal HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x.P(x)"
+qed_goal "exCI" HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x.P(x)"
  (fn prems=>
   [ (rtac ccontr 1),
     (REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1))  ]);
@@ -312,7 +253,7 @@
 
 (* case distinction *)
 
-val case_split_thm = prove_goal HOL.thy "[| P ==> Q; ~P ==> Q |] ==> Q"
+qed_goal "case_split_thm" HOL.thy "[| P ==> Q; ~P ==> Q |] ==> Q"
   (fn [p1,p2] => [cut_facts_tac [excluded_middle] 1, etac disjE 1,
                   etac p2 1, etac p1 1]);
 
@@ -323,8 +264,3 @@
 fun stac th = rtac(th RS ssubst);
 fun sstac ths = EVERY' (map stac ths);
 fun strip_tac i = REPEAT(resolve_tac [impI,allI] i); 
-
-
-end;
-
-open HOL_Lemmas;