0
|
1 |
(* Title: set/set
|
|
2 |
ID: $Id$
|
|
3 |
|
|
4 |
For set.thy.
|
|
5 |
|
|
6 |
Modified version of
|
|
7 |
Title: HOL/set
|
|
8 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
9 |
Copyright 1991 University of Cambridge
|
|
10 |
|
|
11 |
For set.thy. Set theory for higher-order logic. A set is simply a predicate.
|
|
12 |
*)
|
|
13 |
|
|
14 |
open Set;
|
|
15 |
|
|
16 |
val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}";
|
|
17 |
by (rtac (mem_Collect_iff RS iffD2) 1);
|
|
18 |
by (rtac prem 1);
|
|
19 |
val CollectI = result();
|
|
20 |
|
|
21 |
val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
|
|
22 |
by (resolve_tac (prems RL [mem_Collect_iff RS iffD1]) 1);
|
|
23 |
val CollectD = result();
|
|
24 |
|
|
25 |
val [prem] = goal Set.thy "[| !!x. x:A <-> x:B |] ==> A = B";
|
|
26 |
by (rtac (set_extension RS iffD2) 1);
|
|
27 |
by (rtac (prem RS allI) 1);
|
|
28 |
val set_ext = result();
|
|
29 |
|
|
30 |
val prems = goal Set.thy "[| !!x. P(x) <-> Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
|
|
31 |
by (REPEAT (ares_tac [set_ext,iffI,CollectI] 1 ORELSE
|
|
32 |
eresolve_tac ([CollectD] RL (prems RL [iffD1,iffD2])) 1));
|
|
33 |
val Collect_cong = result();
|
|
34 |
|
|
35 |
val CollectE = make_elim CollectD;
|
|
36 |
|
|
37 |
(*** Bounded quantifiers ***)
|
|
38 |
|
|
39 |
val prems = goalw Set.thy [Ball_def]
|
|
40 |
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)";
|
|
41 |
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
|
|
42 |
val ballI = result();
|
|
43 |
|
|
44 |
val [major,minor] = goalw Set.thy [Ball_def]
|
|
45 |
"[| ALL x:A. P(x); x:A |] ==> P(x)";
|
|
46 |
by (rtac (minor RS (major RS spec RS mp)) 1);
|
|
47 |
val bspec = result();
|
|
48 |
|
|
49 |
val major::prems = goalw Set.thy [Ball_def]
|
|
50 |
"[| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q";
|
|
51 |
by (rtac (major RS spec RS impCE) 1);
|
|
52 |
by (REPEAT (eresolve_tac prems 1));
|
|
53 |
val ballE = result();
|
|
54 |
|
|
55 |
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)
|
|
56 |
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
|
|
57 |
|
|
58 |
val prems = goalw Set.thy [Bex_def]
|
|
59 |
"[| P(x); x:A |] ==> EX x:A. P(x)";
|
|
60 |
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
|
|
61 |
val bexI = result();
|
|
62 |
|
|
63 |
val bexCI = prove_goal Set.thy
|
|
64 |
"[| EX x:A. ~P(x) ==> P(a); a:A |] ==> EX x:A.P(x)"
|
|
65 |
(fn prems=>
|
|
66 |
[ (rtac classical 1),
|
|
67 |
(REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);
|
|
68 |
|
|
69 |
val major::prems = goalw Set.thy [Bex_def]
|
|
70 |
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q";
|
|
71 |
by (rtac (major RS exE) 1);
|
|
72 |
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
|
|
73 |
val bexE = result();
|
|
74 |
|
|
75 |
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)
|
|
76 |
val prems = goal Set.thy
|
|
77 |
"(ALL x:A. True) <-> True";
|
|
78 |
by (REPEAT (ares_tac [TrueI,ballI,iffI] 1));
|
|
79 |
val ball_rew = result();
|
|
80 |
|
|
81 |
(** Congruence rules **)
|
|
82 |
|
|
83 |
val prems = goal Set.thy
|
|
84 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \
|
|
85 |
\ (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))";
|
|
86 |
by (resolve_tac (prems RL [ssubst,iffD2]) 1);
|
|
87 |
by (REPEAT (ares_tac [ballI,iffI] 1
|
|
88 |
ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
|
|
89 |
val ball_cong = result();
|
|
90 |
|
|
91 |
val prems = goal Set.thy
|
|
92 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \
|
|
93 |
\ (EX x:A. P(x)) <-> (EX x:A'. P'(x))";
|
|
94 |
by (resolve_tac (prems RL [ssubst,iffD2]) 1);
|
|
95 |
by (REPEAT (etac bexE 1
|
|
96 |
ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
|
|
97 |
val bex_cong = result();
|
|
98 |
|
|
99 |
(*** Rules for subsets ***)
|
|
100 |
|
|
101 |
val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";
|
|
102 |
by (REPEAT (ares_tac (prems @ [ballI]) 1));
|
|
103 |
val subsetI = result();
|
|
104 |
|
|
105 |
(*Rule in Modus Ponens style*)
|
|
106 |
val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B";
|
|
107 |
by (rtac (major RS bspec) 1);
|
|
108 |
by (resolve_tac prems 1);
|
|
109 |
val subsetD = result();
|
|
110 |
|
|
111 |
(*Classical elimination rule*)
|
|
112 |
val major::prems = goalw Set.thy [subset_def]
|
|
113 |
"[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P";
|
|
114 |
by (rtac (major RS ballE) 1);
|
|
115 |
by (REPEAT (eresolve_tac prems 1));
|
|
116 |
val subsetCE = result();
|
|
117 |
|
|
118 |
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
|
|
119 |
fun set_mp_tac i = etac subsetCE i THEN mp_tac i;
|
|
120 |
|
|
121 |
val subset_refl = prove_goal Set.thy "A <= A"
|
|
122 |
(fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);
|
|
123 |
|
|
124 |
goal Set.thy "!!A B C. [| A<=B; B<=C |] ==> A<=C";
|
|
125 |
br subsetI 1;
|
|
126 |
by (REPEAT (eresolve_tac [asm_rl, subsetD] 1));
|
|
127 |
val subset_trans = result();
|
|
128 |
|
|
129 |
|
|
130 |
(*** Rules for equality ***)
|
|
131 |
|
|
132 |
(*Anti-symmetry of the subset relation*)
|
|
133 |
val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = B";
|
|
134 |
by (rtac (iffI RS set_ext) 1);
|
|
135 |
by (REPEAT (ares_tac (prems RL [subsetD]) 1));
|
|
136 |
val subset_antisym = result();
|
|
137 |
val equalityI = subset_antisym;
|
|
138 |
|
|
139 |
(* Equality rules from ZF set theory -- are they appropriate here? *)
|
|
140 |
val prems = goal Set.thy "A = B ==> A<=B";
|
|
141 |
by (resolve_tac (prems RL [subst]) 1);
|
|
142 |
by (rtac subset_refl 1);
|
|
143 |
val equalityD1 = result();
|
|
144 |
|
|
145 |
val prems = goal Set.thy "A = B ==> B<=A";
|
|
146 |
by (resolve_tac (prems RL [subst]) 1);
|
|
147 |
by (rtac subset_refl 1);
|
|
148 |
val equalityD2 = result();
|
|
149 |
|
|
150 |
val prems = goal Set.thy
|
|
151 |
"[| A = B; [| A<=B; B<=A |] ==> P |] ==> P";
|
|
152 |
by (resolve_tac prems 1);
|
|
153 |
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
|
|
154 |
val equalityE = result();
|
|
155 |
|
|
156 |
val major::prems = goal Set.thy
|
|
157 |
"[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P";
|
|
158 |
by (rtac (major RS equalityE) 1);
|
|
159 |
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
|
|
160 |
val equalityCE = result();
|
|
161 |
|
|
162 |
(*Lemma for creating induction formulae -- for "pattern matching" on p
|
|
163 |
To make the induction hypotheses usable, apply "spec" or "bspec" to
|
|
164 |
put universal quantifiers over the free variables in p. *)
|
|
165 |
val prems = goal Set.thy
|
|
166 |
"[| p:A; !!z. z:A ==> p=z --> R |] ==> R";
|
|
167 |
by (rtac mp 1);
|
|
168 |
by (REPEAT (resolve_tac (refl::prems) 1));
|
|
169 |
val setup_induction = result();
|
|
170 |
|
|
171 |
goal Set.thy "{x.x:A} = A";
|
|
172 |
by (REPEAT (ares_tac [equalityI,subsetI,CollectI] 1 ORELSE eresolve_tac [CollectD] 1));
|
|
173 |
val trivial_set = result();
|
|
174 |
|
|
175 |
(*** Rules for binary union -- Un ***)
|
|
176 |
|
|
177 |
val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";
|
|
178 |
by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));
|
|
179 |
val UnI1 = result();
|
|
180 |
|
|
181 |
val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";
|
|
182 |
by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));
|
|
183 |
val UnI2 = result();
|
|
184 |
|
|
185 |
(*Classical introduction rule: no commitment to A vs B*)
|
|
186 |
val UnCI = prove_goal Set.thy "(~c:B ==> c:A) ==> c : A Un B"
|
|
187 |
(fn prems=>
|
|
188 |
[ (rtac classical 1),
|
|
189 |
(REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
|
|
190 |
(REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);
|
|
191 |
|
|
192 |
val major::prems = goalw Set.thy [Un_def]
|
|
193 |
"[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P";
|
|
194 |
by (rtac (major RS CollectD RS disjE) 1);
|
|
195 |
by (REPEAT (eresolve_tac prems 1));
|
|
196 |
val UnE = result();
|
|
197 |
|
|
198 |
|
|
199 |
(*** Rules for small intersection -- Int ***)
|
|
200 |
|
|
201 |
val prems = goalw Set.thy [Int_def]
|
|
202 |
"[| c:A; c:B |] ==> c : A Int B";
|
|
203 |
by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));
|
|
204 |
val IntI = result();
|
|
205 |
|
|
206 |
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";
|
|
207 |
by (rtac (major RS CollectD RS conjunct1) 1);
|
|
208 |
val IntD1 = result();
|
|
209 |
|
|
210 |
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";
|
|
211 |
by (rtac (major RS CollectD RS conjunct2) 1);
|
|
212 |
val IntD2 = result();
|
|
213 |
|
|
214 |
val [major,minor] = goal Set.thy
|
|
215 |
"[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P";
|
|
216 |
by (rtac minor 1);
|
|
217 |
by (rtac (major RS IntD1) 1);
|
|
218 |
by (rtac (major RS IntD2) 1);
|
|
219 |
val IntE = result();
|
|
220 |
|
|
221 |
|
|
222 |
(*** Rules for set complement -- Compl ***)
|
|
223 |
|
|
224 |
val prems = goalw Set.thy [Compl_def]
|
|
225 |
"[| c:A ==> False |] ==> c : Compl(A)";
|
|
226 |
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
|
|
227 |
val ComplI = result();
|
|
228 |
|
|
229 |
(*This form, with negated conclusion, works well with the Classical prover.
|
|
230 |
Negated assumptions behave like formulae on the right side of the notional
|
|
231 |
turnstile...*)
|
|
232 |
val major::prems = goalw Set.thy [Compl_def]
|
|
233 |
"[| c : Compl(A) |] ==> ~c:A";
|
|
234 |
by (rtac (major RS CollectD) 1);
|
|
235 |
val ComplD = result();
|
|
236 |
|
|
237 |
val ComplE = make_elim ComplD;
|
|
238 |
|
|
239 |
|
|
240 |
(*** Empty sets ***)
|
|
241 |
|
|
242 |
goalw Set.thy [empty_def] "{x.False} = {}";
|
|
243 |
br refl 1;
|
|
244 |
val empty_eq = result();
|
|
245 |
|
|
246 |
val [prem] = goalw Set.thy [empty_def] "a : {} ==> P";
|
|
247 |
by (rtac (prem RS CollectD RS FalseE) 1);
|
|
248 |
val emptyD = result();
|
|
249 |
|
|
250 |
val emptyE = make_elim emptyD;
|
|
251 |
|
|
252 |
val [prem] = goal Set.thy "~ A={} ==> (EX x.x:A)";
|
|
253 |
br (prem RS swap) 1;
|
|
254 |
br equalityI 1;
|
|
255 |
by (ALLGOALS (fast_tac (FOL_cs addSIs [subsetI] addSEs [emptyD])));
|
|
256 |
val not_emptyD = result();
|
|
257 |
|
|
258 |
(*** Singleton sets ***)
|
|
259 |
|
|
260 |
goalw Set.thy [singleton_def] "a : {a}";
|
|
261 |
by (rtac CollectI 1);
|
|
262 |
by (rtac refl 1);
|
|
263 |
val singletonI = result();
|
|
264 |
|
|
265 |
val [major] = goalw Set.thy [singleton_def] "b : {a} ==> b=a";
|
|
266 |
by (rtac (major RS CollectD) 1);
|
|
267 |
val singletonD = result();
|
|
268 |
|
|
269 |
val singletonE = make_elim singletonD;
|
|
270 |
|
|
271 |
(*** Unions of families ***)
|
|
272 |
|
|
273 |
(*The order of the premises presupposes that A is rigid; b may be flexible*)
|
|
274 |
val prems = goalw Set.thy [UNION_def]
|
|
275 |
"[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))";
|
|
276 |
by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));
|
|
277 |
val UN_I = result();
|
|
278 |
|
|
279 |
val major::prems = goalw Set.thy [UNION_def]
|
|
280 |
"[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R";
|
|
281 |
by (rtac (major RS CollectD RS bexE) 1);
|
|
282 |
by (REPEAT (ares_tac prems 1));
|
|
283 |
val UN_E = result();
|
|
284 |
|
|
285 |
val prems = goal Set.thy
|
|
286 |
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
|
|
287 |
\ (UN x:A. C(x)) = (UN x:B. D(x))";
|
|
288 |
by (REPEAT (etac UN_E 1
|
|
289 |
ORELSE ares_tac ([UN_I,equalityI,subsetI] @
|
|
290 |
(prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
|
|
291 |
val UN_cong = result();
|
|
292 |
|
|
293 |
(*** Intersections of families -- INTER x:A. B(x) is Inter(B)``A ) *)
|
|
294 |
|
|
295 |
val prems = goalw Set.thy [INTER_def]
|
|
296 |
"(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
|
|
297 |
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
|
|
298 |
val INT_I = result();
|
|
299 |
|
|
300 |
val major::prems = goalw Set.thy [INTER_def]
|
|
301 |
"[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)";
|
|
302 |
by (rtac (major RS CollectD RS bspec) 1);
|
|
303 |
by (resolve_tac prems 1);
|
|
304 |
val INT_D = result();
|
|
305 |
|
|
306 |
(*"Classical" elimination rule -- does not require proving X:C *)
|
|
307 |
val major::prems = goalw Set.thy [INTER_def]
|
|
308 |
"[| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R";
|
|
309 |
by (rtac (major RS CollectD RS ballE) 1);
|
|
310 |
by (REPEAT (eresolve_tac prems 1));
|
|
311 |
val INT_E = result();
|
|
312 |
|
|
313 |
val prems = goal Set.thy
|
|
314 |
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
|
|
315 |
\ (INT x:A. C(x)) = (INT x:B. D(x))";
|
|
316 |
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
|
|
317 |
by (REPEAT (dtac INT_D 1
|
|
318 |
ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
|
|
319 |
val INT_cong = result();
|
|
320 |
|
|
321 |
(*** Rules for Unions ***)
|
|
322 |
|
|
323 |
(*The order of the premises presupposes that C is rigid; A may be flexible*)
|
|
324 |
val prems = goalw Set.thy [Union_def]
|
|
325 |
"[| X:C; A:X |] ==> A : Union(C)";
|
|
326 |
by (REPEAT (resolve_tac (prems @ [UN_I]) 1));
|
|
327 |
val UnionI = result();
|
|
328 |
|
|
329 |
val major::prems = goalw Set.thy [Union_def]
|
|
330 |
"[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R";
|
|
331 |
by (rtac (major RS UN_E) 1);
|
|
332 |
by (REPEAT (ares_tac prems 1));
|
|
333 |
val UnionE = result();
|
|
334 |
|
|
335 |
(*** Rules for Inter ***)
|
|
336 |
|
|
337 |
val prems = goalw Set.thy [Inter_def]
|
|
338 |
"[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
|
|
339 |
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
|
|
340 |
val InterI = result();
|
|
341 |
|
|
342 |
(*A "destruct" rule -- every X in C contains A as an element, but
|
|
343 |
A:X can hold when X:C does not! This rule is analogous to "spec". *)
|
|
344 |
val major::prems = goalw Set.thy [Inter_def]
|
|
345 |
"[| A : Inter(C); X:C |] ==> A:X";
|
|
346 |
by (rtac (major RS INT_D) 1);
|
|
347 |
by (resolve_tac prems 1);
|
|
348 |
val InterD = result();
|
|
349 |
|
|
350 |
(*"Classical" elimination rule -- does not require proving X:C *)
|
|
351 |
val major::prems = goalw Set.thy [Inter_def]
|
|
352 |
"[| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R";
|
|
353 |
by (rtac (major RS INT_E) 1);
|
|
354 |
by (REPEAT (eresolve_tac prems 1));
|
|
355 |
val InterE = result();
|