0
|
1 |
(* Title: CCL/subset
|
|
2 |
ID: $Id$
|
|
3 |
|
|
4 |
Modified version of
|
|
5 |
Title: HOL/subset
|
|
6 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
7 |
Copyright 1991 University of Cambridge
|
|
8 |
|
|
9 |
Derived rules involving subsets
|
|
10 |
Union and Intersection as lattice operations
|
|
11 |
*)
|
|
12 |
|
|
13 |
(*** Big Union -- least upper bound of a set ***)
|
|
14 |
|
|
15 |
val prems = goal Set.thy
|
|
16 |
"B:A ==> B <= Union(A)";
|
|
17 |
by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1));
|
|
18 |
val Union_upper = result();
|
|
19 |
|
|
20 |
val prems = goal Set.thy
|
|
21 |
"[| !!X. X:A ==> X<=C |] ==> Union(A) <= C";
|
|
22 |
by (REPEAT (ares_tac [subsetI] 1
|
|
23 |
ORELSE eresolve_tac ([UnionE] @ (prems RL [subsetD])) 1));
|
|
24 |
val Union_least = result();
|
|
25 |
|
|
26 |
|
|
27 |
(*** Big Intersection -- greatest lower bound of a set ***)
|
|
28 |
|
|
29 |
val prems = goal Set.thy
|
|
30 |
"B:A ==> Inter(A) <= B";
|
|
31 |
by (REPEAT (resolve_tac (prems@[subsetI]) 1
|
|
32 |
ORELSE etac InterD 1));
|
|
33 |
val Inter_lower = result();
|
|
34 |
|
|
35 |
val prems = goal Set.thy
|
|
36 |
"[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)";
|
|
37 |
by (REPEAT (ares_tac [subsetI,InterI] 1
|
|
38 |
ORELSE eresolve_tac (prems RL [subsetD]) 1));
|
|
39 |
val Inter_greatest = result();
|
|
40 |
|
|
41 |
(*** Finite Union -- the least upper bound of 2 sets ***)
|
|
42 |
|
|
43 |
goal Set.thy "A <= A Un B";
|
|
44 |
by (REPEAT (ares_tac [subsetI,UnI1] 1));
|
|
45 |
val Un_upper1 = result();
|
|
46 |
|
|
47 |
goal Set.thy "B <= A Un B";
|
|
48 |
by (REPEAT (ares_tac [subsetI,UnI2] 1));
|
|
49 |
val Un_upper2 = result();
|
|
50 |
|
|
51 |
val prems = goal Set.thy "[| A<=C; B<=C |] ==> A Un B <= C";
|
|
52 |
by (cut_facts_tac prems 1);
|
|
53 |
by (DEPTH_SOLVE (ares_tac [subsetI] 1
|
|
54 |
ORELSE eresolve_tac [UnE,subsetD] 1));
|
|
55 |
val Un_least = result();
|
|
56 |
|
|
57 |
(*** Finite Intersection -- the greatest lower bound of 2 sets *)
|
|
58 |
|
|
59 |
goal Set.thy "A Int B <= A";
|
|
60 |
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1));
|
|
61 |
val Int_lower1 = result();
|
|
62 |
|
|
63 |
goal Set.thy "A Int B <= B";
|
|
64 |
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1));
|
|
65 |
val Int_lower2 = result();
|
|
66 |
|
|
67 |
val prems = goal Set.thy "[| C<=A; C<=B |] ==> C <= A Int B";
|
|
68 |
by (cut_facts_tac prems 1);
|
|
69 |
by (REPEAT (ares_tac [subsetI,IntI] 1
|
|
70 |
ORELSE etac subsetD 1));
|
|
71 |
val Int_greatest = result();
|
|
72 |
|
|
73 |
(*** Monotonicity ***)
|
|
74 |
|
|
75 |
val [prem] = goalw Set.thy [mono_def]
|
|
76 |
"[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)";
|
|
77 |
by (REPEAT (ares_tac [allI, impI, prem] 1));
|
|
78 |
val monoI = result();
|
|
79 |
|
|
80 |
val [major,minor] = goalw Set.thy [mono_def]
|
|
81 |
"[| mono(f); A <= B |] ==> f(A) <= f(B)";
|
|
82 |
by (rtac (major RS spec RS spec RS mp) 1);
|
|
83 |
by (rtac minor 1);
|
|
84 |
val monoD = result();
|
|
85 |
|
|
86 |
val [prem] = goalw Set.thy [mono_def] "(!!x.f(x) = g(x)) ==> mono(f) <-> mono(g)";
|
|
87 |
by (REPEAT (resolve_tac (iff_refl::FOL_congs @ [prem RS subst]) 1));
|
|
88 |
val mono_cong = result();
|
|
89 |
|
|
90 |
val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)";
|
|
91 |
by (rtac Un_least 1);
|
|
92 |
by (rtac (Un_upper1 RS (prem RS monoD)) 1);
|
|
93 |
by (rtac (Un_upper2 RS (prem RS monoD)) 1);
|
|
94 |
val mono_Un = result();
|
|
95 |
|
|
96 |
val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)";
|
|
97 |
by (rtac Int_greatest 1);
|
|
98 |
by (rtac (Int_lower1 RS (prem RS monoD)) 1);
|
|
99 |
by (rtac (Int_lower2 RS (prem RS monoD)) 1);
|
|
100 |
val mono_Int = result();
|
|
101 |
|
|
102 |
(****)
|
|
103 |
|
|
104 |
val set_cs = FOL_cs
|
|
105 |
addSIs [ballI, subsetI, InterI, INT_I, CollectI,
|
|
106 |
ComplI, IntI, UnCI, singletonI]
|
|
107 |
addIs [bexI, UnionI, UN_I]
|
|
108 |
addSEs [bexE, UnionE, UN_E,
|
|
109 |
CollectE, ComplE, IntE, UnE, emptyE, singletonE]
|
|
110 |
addEs [ballE, InterD, InterE, INT_D, INT_E, subsetD, subsetCE];
|
|
111 |
|
|
112 |
fun cfast_tac prems = cut_facts_tac prems THEN' fast_tac set_cs;
|
|
113 |
|
|
114 |
fun prover s = prove_goal Set.thy s (fn _=>[fast_tac set_cs 1]);
|
|
115 |
|
|
116 |
val mem_rews = [trivial_set,empty_eq] @ (map prover
|
|
117 |
[ "(a : A Un B) <-> (a:A | a:B)",
|
|
118 |
"(a : A Int B) <-> (a:A & a:B)",
|
|
119 |
"(a : Compl(B)) <-> (~a:B)",
|
|
120 |
"(a : {b}) <-> (a=b)",
|
|
121 |
"(a : {}) <-> False",
|
|
122 |
"(a : {x.P(x)}) <-> P(a)" ]);
|
|
123 |
|
|
124 |
val set_congs =
|
|
125 |
[Collect_cong, ball_cong, bex_cong, INT_cong, UN_cong, mono_cong] @
|
|
126 |
mk_congs Set.thy ["Compl", "op Int", "op Un", "Union", "Inter",
|
|
127 |
"op :", "op <=", "singleton"];
|
|
128 |
|
|
129 |
val set_ss = FOL_ss addcongs set_congs addrews mem_rews;
|