0
|
1 |
(* Title: ZF/zf.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory
|
|
7 |
*)
|
|
8 |
|
|
9 |
open ZF;
|
|
10 |
|
|
11 |
signature ZF_LEMMAS =
|
|
12 |
sig
|
|
13 |
val ballE : thm
|
|
14 |
val ballI : thm
|
|
15 |
val ball_cong : thm
|
|
16 |
val ball_rew : thm
|
|
17 |
val ball_tac : int -> tactic
|
|
18 |
val basic_ZF_congs : thm list
|
|
19 |
val bexCI : thm
|
|
20 |
val bexE : thm
|
|
21 |
val bexI : thm
|
|
22 |
val bex_cong : thm
|
|
23 |
val bspec : thm
|
|
24 |
val CollectD1 : thm
|
|
25 |
val CollectD2 : thm
|
|
26 |
val CollectE : thm
|
|
27 |
val CollectI : thm
|
|
28 |
val Collect_cong : thm
|
|
29 |
val emptyE : thm
|
|
30 |
val empty_subsetI : thm
|
|
31 |
val equalityCE : thm
|
|
32 |
val equalityD1 : thm
|
|
33 |
val equalityD2 : thm
|
|
34 |
val equalityE : thm
|
|
35 |
val equalityI : thm
|
|
36 |
val equality_iffI : thm
|
|
37 |
val equals0D : thm
|
|
38 |
val equals0I : thm
|
|
39 |
val ex1_functional : thm
|
|
40 |
val InterD : thm
|
|
41 |
val InterE : thm
|
|
42 |
val InterI : thm
|
|
43 |
val INT_E : thm
|
|
44 |
val INT_I : thm
|
|
45 |
val lemmas_cs : claset
|
|
46 |
val PowD : thm
|
|
47 |
val PowI : thm
|
|
48 |
val prove_cong_tac : thm list -> int -> tactic
|
|
49 |
val RepFunE : thm
|
|
50 |
val RepFunI : thm
|
|
51 |
val RepFun_eqI : thm
|
|
52 |
val RepFun_cong : thm
|
|
53 |
val ReplaceE : thm
|
|
54 |
val ReplaceI : thm
|
|
55 |
val Replace_iff : thm
|
|
56 |
val Replace_cong : thm
|
|
57 |
val rev_ballE : thm
|
|
58 |
val rev_bspec : thm
|
|
59 |
val rev_subsetD : thm
|
|
60 |
val separation : thm
|
|
61 |
val setup_induction : thm
|
|
62 |
val set_mp_tac : int -> tactic
|
|
63 |
val subsetCE : thm
|
|
64 |
val subsetD : thm
|
|
65 |
val subsetI : thm
|
|
66 |
val subset_refl : thm
|
|
67 |
val subset_trans : thm
|
|
68 |
val UnionE : thm
|
|
69 |
val UnionI : thm
|
|
70 |
val UN_E : thm
|
|
71 |
val UN_I : thm
|
|
72 |
end;
|
|
73 |
|
|
74 |
|
|
75 |
structure ZF_Lemmas : ZF_LEMMAS =
|
|
76 |
struct
|
|
77 |
|
|
78 |
val basic_ZF_congs = mk_congs ZF.thy
|
|
79 |
["op `", "op ``", "op Int", "op Un", "op -", "op <=", "op :",
|
|
80 |
"Pow", "Union", "Inter", "fst", "snd", "succ", "Pair", "Upair", "cons",
|
|
81 |
"domain", "range", "restrict"];
|
|
82 |
|
|
83 |
fun prove_cong_tac prems i =
|
|
84 |
REPEAT (ares_tac (prems@[refl]@FOL_congs@basic_ZF_congs) i);
|
|
85 |
|
|
86 |
(*** Bounded universal quantifier ***)
|
|
87 |
|
|
88 |
val ballI = prove_goalw ZF.thy [Ball_def]
|
|
89 |
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"
|
|
90 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]);
|
|
91 |
|
|
92 |
val bspec = prove_goalw ZF.thy [Ball_def]
|
|
93 |
"[| ALL x:A. P(x); x: A |] ==> P(x)"
|
|
94 |
(fn major::prems=>
|
|
95 |
[ (rtac (major RS spec RS mp) 1),
|
|
96 |
(resolve_tac prems 1) ]);
|
|
97 |
|
|
98 |
val ballE = prove_goalw ZF.thy [Ball_def]
|
|
99 |
"[| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q"
|
|
100 |
(fn major::prems=>
|
|
101 |
[ (rtac (major RS allE) 1),
|
|
102 |
(REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]);
|
|
103 |
|
|
104 |
(*Used in the datatype package*)
|
|
105 |
val rev_bspec = prove_goal ZF.thy
|
|
106 |
"!!x A P. [| x: A; ALL x:A. P(x) |] ==> P(x)"
|
|
107 |
(fn _ =>
|
|
108 |
[ REPEAT (ares_tac [bspec] 1) ]);
|
|
109 |
|
|
110 |
(*Instantiates x first: better for automatic theorem proving?*)
|
|
111 |
val rev_ballE = prove_goal ZF.thy
|
|
112 |
"[| ALL x:A. P(x); ~ x:A ==> Q; P(x) ==> Q |] ==> Q"
|
|
113 |
(fn major::prems=>
|
|
114 |
[ (rtac (major RS ballE) 1),
|
|
115 |
(REPEAT (eresolve_tac prems 1)) ]);
|
|
116 |
|
|
117 |
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)
|
|
118 |
val ball_tac = dtac bspec THEN' assume_tac;
|
|
119 |
|
|
120 |
(*Trival rewrite rule; (ALL x:A.P)<->P holds only if A is nonempty!*)
|
|
121 |
val ball_rew = prove_goal ZF.thy "(ALL x:A. True) <-> True"
|
|
122 |
(fn prems=> [ (REPEAT (ares_tac [TrueI,ballI,iffI] 1)) ]);
|
|
123 |
|
|
124 |
(*Congruence rule for rewriting*)
|
|
125 |
val ball_cong = prove_goalw ZF.thy [Ball_def]
|
|
126 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) \
|
|
127 |
\ |] ==> (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))"
|
|
128 |
(fn prems=> [ (prove_cong_tac prems 1) ]);
|
|
129 |
|
|
130 |
(*** Bounded existential quantifier ***)
|
|
131 |
|
|
132 |
val bexI = prove_goalw ZF.thy [Bex_def]
|
|
133 |
"[| P(x); x: A |] ==> EX x:A. P(x)"
|
|
134 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]);
|
|
135 |
|
|
136 |
(*Not of the general form for such rules; ~EX has become ALL~ *)
|
|
137 |
val bexCI = prove_goal ZF.thy
|
|
138 |
"[| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A.P(x)"
|
|
139 |
(fn prems=>
|
|
140 |
[ (rtac classical 1),
|
|
141 |
(REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);
|
|
142 |
|
|
143 |
val bexE = prove_goalw ZF.thy [Bex_def]
|
|
144 |
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q \
|
|
145 |
\ |] ==> Q"
|
|
146 |
(fn major::prems=>
|
|
147 |
[ (rtac (major RS exE) 1),
|
|
148 |
(REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]);
|
|
149 |
|
|
150 |
(*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*)
|
|
151 |
|
|
152 |
val bex_cong = prove_goalw ZF.thy [Bex_def]
|
|
153 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) \
|
|
154 |
\ |] ==> (EX x:A. P(x)) <-> (EX x:A'. P'(x))"
|
|
155 |
(fn prems=> [ (prove_cong_tac prems 1) ]);
|
|
156 |
|
|
157 |
(*** Rules for subsets ***)
|
|
158 |
|
|
159 |
val subsetI = prove_goalw ZF.thy [subset_def]
|
|
160 |
"(!!x.x:A ==> x:B) ==> A <= B"
|
|
161 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]);
|
|
162 |
|
|
163 |
(*Rule in Modus Ponens style [was called subsetE] *)
|
|
164 |
val subsetD = prove_goalw ZF.thy [subset_def] "[| A <= B; c:A |] ==> c:B"
|
|
165 |
(fn major::prems=>
|
|
166 |
[ (rtac (major RS bspec) 1),
|
|
167 |
(resolve_tac prems 1) ]);
|
|
168 |
|
|
169 |
(*Classical elimination rule*)
|
|
170 |
val subsetCE = prove_goalw ZF.thy [subset_def]
|
|
171 |
"[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P"
|
|
172 |
(fn major::prems=>
|
|
173 |
[ (rtac (major RS ballE) 1),
|
|
174 |
(REPEAT (eresolve_tac prems 1)) ]);
|
|
175 |
|
|
176 |
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
|
|
177 |
val set_mp_tac = dtac subsetD THEN' assume_tac;
|
|
178 |
|
|
179 |
(*Sometimes useful with premises in this order*)
|
|
180 |
val rev_subsetD = prove_goal ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B"
|
|
181 |
(fn _=> [REPEAT (ares_tac [subsetD] 1)]);
|
|
182 |
|
|
183 |
val subset_refl = prove_goal ZF.thy "A <= A"
|
|
184 |
(fn _=> [ (rtac subsetI 1), atac 1 ]);
|
|
185 |
|
|
186 |
val subset_trans = prove_goal ZF.thy "[| A<=B; B<=C |] ==> A<=C"
|
|
187 |
(fn prems=> [ (REPEAT (ares_tac ([subsetI]@(prems RL [subsetD])) 1)) ]);
|
|
188 |
|
|
189 |
|
|
190 |
(*** Rules for equality ***)
|
|
191 |
|
|
192 |
(*Anti-symmetry of the subset relation*)
|
|
193 |
val equalityI = prove_goal ZF.thy "[| A <= B; B <= A |] ==> A = B"
|
|
194 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]);
|
|
195 |
|
|
196 |
val equality_iffI = prove_goal ZF.thy "(!!x. x:A <-> x:B) ==> A = B"
|
|
197 |
(fn [prem] =>
|
|
198 |
[ (rtac equalityI 1),
|
|
199 |
(REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]);
|
|
200 |
|
|
201 |
val equalityD1 = prove_goal ZF.thy "A = B ==> A<=B"
|
|
202 |
(fn prems=>
|
|
203 |
[ (rtac (extension RS iffD1 RS conjunct1) 1),
|
|
204 |
(resolve_tac prems 1) ]);
|
|
205 |
|
|
206 |
val equalityD2 = prove_goal ZF.thy "A = B ==> B<=A"
|
|
207 |
(fn prems=>
|
|
208 |
[ (rtac (extension RS iffD1 RS conjunct2) 1),
|
|
209 |
(resolve_tac prems 1) ]);
|
|
210 |
|
|
211 |
val equalityE = prove_goal ZF.thy
|
|
212 |
"[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"
|
|
213 |
(fn prems=>
|
|
214 |
[ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]);
|
|
215 |
|
|
216 |
val equalityCE = prove_goal ZF.thy
|
|
217 |
"[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P"
|
|
218 |
(fn major::prems=>
|
|
219 |
[ (rtac (major RS equalityE) 1),
|
|
220 |
(REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ]);
|
|
221 |
|
|
222 |
(*Lemma for creating induction formulae -- for "pattern matching" on p
|
|
223 |
To make the induction hypotheses usable, apply "spec" or "bspec" to
|
|
224 |
put universal quantifiers over the free variables in p.
|
|
225 |
Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*)
|
|
226 |
val setup_induction = prove_goal ZF.thy
|
|
227 |
"[| p: A; !!z. z: A ==> p=z --> R |] ==> R"
|
|
228 |
(fn prems=>
|
|
229 |
[ (rtac mp 1),
|
|
230 |
(REPEAT (resolve_tac (refl::prems) 1)) ]);
|
|
231 |
|
|
232 |
|
|
233 |
(*** Rules for Replace -- the derived form of replacement ***)
|
|
234 |
|
|
235 |
val ex1_functional = prove_goal ZF.thy
|
|
236 |
"[| EX! z. P(a,z); P(a,b); P(a,c) |] ==> b = c"
|
|
237 |
(fn prems=>
|
|
238 |
[ (cut_facts_tac prems 1),
|
|
239 |
(best_tac FOL_dup_cs 1) ]);
|
|
240 |
|
|
241 |
val Replace_iff = prove_goalw ZF.thy [Replace_def]
|
|
242 |
"b : {y. x:A, P(x,y)} <-> (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))"
|
|
243 |
(fn _=>
|
|
244 |
[ (rtac (replacement RS iff_trans) 1),
|
|
245 |
(REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1
|
|
246 |
ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]);
|
|
247 |
|
|
248 |
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
|
|
249 |
val ReplaceI = prove_goal ZF.thy
|
|
250 |
"[| x: A; P(x,b); !!y. P(x,y) ==> y=b |] ==> \
|
|
251 |
\ b : {y. x:A, P(x,y)}"
|
|
252 |
(fn prems=>
|
|
253 |
[ (rtac (Replace_iff RS iffD2) 1),
|
|
254 |
(REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]);
|
|
255 |
|
|
256 |
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
|
|
257 |
val ReplaceE = prove_goal ZF.thy
|
|
258 |
"[| b : {y. x:A, P(x,y)}; \
|
|
259 |
\ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R \
|
|
260 |
\ |] ==> R"
|
|
261 |
(fn prems=>
|
|
262 |
[ (rtac (Replace_iff RS iffD1 RS bexE) 1),
|
|
263 |
(etac conjE 2),
|
|
264 |
(REPEAT (ares_tac prems 1)) ]);
|
|
265 |
|
|
266 |
val Replace_cong = prove_goal ZF.thy
|
|
267 |
"[| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \
|
|
268 |
\ {y. x:A, P(x,y)} = {y. x:B, Q(x,y)}"
|
|
269 |
(fn prems=>
|
|
270 |
let val substprems = prems RL [subst, ssubst]
|
|
271 |
and iffprems = prems RL [iffD1,iffD2]
|
|
272 |
in [ (rtac equalityI 1),
|
|
273 |
(REPEAT (eresolve_tac (substprems@[asm_rl, ReplaceE, spec RS mp]) 1
|
|
274 |
ORELSE resolve_tac [subsetI, ReplaceI] 1
|
|
275 |
ORELSE (resolve_tac iffprems 1 THEN assume_tac 2))) ]
|
|
276 |
end);
|
|
277 |
|
|
278 |
|
|
279 |
(*** Rules for RepFun ***)
|
|
280 |
|
|
281 |
val RepFunI = prove_goalw ZF.thy [RepFun_def]
|
|
282 |
"!!a A. a : A ==> f(a) : {f(x). x:A}"
|
|
283 |
(fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]);
|
|
284 |
|
|
285 |
(*Useful for co-induction proofs*)
|
|
286 |
val RepFun_eqI = prove_goal ZF.thy
|
|
287 |
"!!b a f. [| b=f(a); a : A |] ==> b : {f(x). x:A}"
|
|
288 |
(fn _ => [ etac ssubst 1, etac RepFunI 1 ]);
|
|
289 |
|
|
290 |
val RepFunE = prove_goalw ZF.thy [RepFun_def]
|
|
291 |
"[| b : {f(x). x:A}; \
|
|
292 |
\ !!x.[| x:A; b=f(x) |] ==> P |] ==> \
|
|
293 |
\ P"
|
|
294 |
(fn major::prems=>
|
|
295 |
[ (rtac (major RS ReplaceE) 1),
|
|
296 |
(REPEAT (ares_tac prems 1)) ]);
|
|
297 |
|
|
298 |
val RepFun_cong = prove_goalw ZF.thy [RepFun_def]
|
|
299 |
"[| A=B; !!x. x:B ==> f(x)=g(x) |] ==> \
|
|
300 |
\ {f(x). x:A} = {g(x). x:B}"
|
|
301 |
(fn prems=> [ (prove_cong_tac (prems@[Replace_cong]) 1) ]);
|
|
302 |
|
|
303 |
|
|
304 |
(*** Rules for Collect -- forming a subset by separation ***)
|
|
305 |
|
|
306 |
(*Separation is derivable from Replacement*)
|
|
307 |
val separation = prove_goalw ZF.thy [Collect_def]
|
|
308 |
"a : {x:A. P(x)} <-> a:A & P(a)"
|
|
309 |
(fn _=> [ (fast_tac (FOL_cs addIs [bexI,ReplaceI]
|
|
310 |
addSEs [bexE,ReplaceE]) 1) ]);
|
|
311 |
|
|
312 |
val CollectI = prove_goal ZF.thy
|
|
313 |
"[| a:A; P(a) |] ==> a : {x:A. P(x)}"
|
|
314 |
(fn prems=>
|
|
315 |
[ (rtac (separation RS iffD2) 1),
|
|
316 |
(REPEAT (resolve_tac (prems@[conjI]) 1)) ]);
|
|
317 |
|
|
318 |
val CollectE = prove_goal ZF.thy
|
|
319 |
"[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> R |] ==> R"
|
|
320 |
(fn prems=>
|
|
321 |
[ (rtac (separation RS iffD1 RS conjE) 1),
|
|
322 |
(REPEAT (ares_tac prems 1)) ]);
|
|
323 |
|
|
324 |
val CollectD1 = prove_goal ZF.thy "a : {x:A. P(x)} ==> a:A"
|
|
325 |
(fn [major]=>
|
|
326 |
[ (rtac (major RS CollectE) 1),
|
|
327 |
(assume_tac 1) ]);
|
|
328 |
|
|
329 |
val CollectD2 = prove_goal ZF.thy "a : {x:A. P(x)} ==> P(a)"
|
|
330 |
(fn [major]=>
|
|
331 |
[ (rtac (major RS CollectE) 1),
|
|
332 |
(assume_tac 1) ]);
|
|
333 |
|
|
334 |
val Collect_cong = prove_goalw ZF.thy [Collect_def]
|
|
335 |
"[| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==> \
|
|
336 |
\ {x:A. P(x)} = {x:B. Q(x)}"
|
|
337 |
(fn prems=> [ (prove_cong_tac (prems@[Replace_cong]) 1) ]);
|
|
338 |
|
|
339 |
(*** Rules for Unions ***)
|
|
340 |
|
|
341 |
(*The order of the premises presupposes that C is rigid; A may be flexible*)
|
|
342 |
val UnionI = prove_goal ZF.thy "[| B: C; A: B |] ==> A: Union(C)"
|
|
343 |
(fn prems=>
|
|
344 |
[ (resolve_tac [union_iff RS iffD2] 1),
|
|
345 |
(REPEAT (resolve_tac (prems @ [bexI]) 1)) ]);
|
|
346 |
|
|
347 |
val UnionE = prove_goal ZF.thy
|
|
348 |
"[| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R"
|
|
349 |
(fn prems=>
|
|
350 |
[ (resolve_tac [union_iff RS iffD1 RS bexE] 1),
|
|
351 |
(REPEAT (ares_tac prems 1)) ]);
|
|
352 |
|
|
353 |
(*** Rules for Inter ***)
|
|
354 |
|
|
355 |
(*Not obviously useful towards proving InterI, InterD, InterE*)
|
|
356 |
val Inter_iff = prove_goalw ZF.thy [Inter_def,Ball_def]
|
|
357 |
"A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)"
|
|
358 |
(fn _=> [ (rtac (separation RS iff_trans) 1),
|
|
359 |
(fast_tac (FOL_cs addIs [UnionI] addSEs [UnionE]) 1) ]);
|
|
360 |
|
|
361 |
(* Intersection is well-behaved only if the family is non-empty! *)
|
|
362 |
val InterI = prove_goalw ZF.thy [Inter_def]
|
|
363 |
"[| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)"
|
|
364 |
(fn prems=>
|
|
365 |
[ (DEPTH_SOLVE (ares_tac ([CollectI,UnionI,ballI] @ prems) 1)) ]);
|
|
366 |
|
|
367 |
(*A "destruct" rule -- every B in C contains A as an element, but
|
|
368 |
A:B can hold when B:C does not! This rule is analogous to "spec". *)
|
|
369 |
val InterD = prove_goalw ZF.thy [Inter_def]
|
|
370 |
"[| A : Inter(C); B : C |] ==> A : B"
|
|
371 |
(fn [major,minor]=>
|
|
372 |
[ (rtac (major RS CollectD2 RS bspec) 1),
|
|
373 |
(rtac minor 1) ]);
|
|
374 |
|
|
375 |
(*"Classical" elimination rule -- does not require exhibiting B:C *)
|
|
376 |
val InterE = prove_goalw ZF.thy [Inter_def]
|
|
377 |
"[| A : Inter(C); A:B ==> R; ~ B:C ==> R |] ==> R"
|
|
378 |
(fn major::prems=>
|
|
379 |
[ (rtac (major RS CollectD2 RS ballE) 1),
|
|
380 |
(REPEAT (eresolve_tac prems 1)) ]);
|
|
381 |
|
|
382 |
(*** Rules for Unions of families ***)
|
|
383 |
(* UN x:A. B(x) abbreviates Union({B(x). x:A}) *)
|
|
384 |
|
|
385 |
(*The order of the premises presupposes that A is rigid; b may be flexible*)
|
|
386 |
val UN_I = prove_goal ZF.thy "[| a: A; b: B(a) |] ==> b: (UN x:A. B(x))"
|
|
387 |
(fn prems=>
|
|
388 |
[ (REPEAT (resolve_tac (prems@[UnionI,RepFunI]) 1)) ]);
|
|
389 |
|
|
390 |
val UN_E = prove_goal ZF.thy
|
|
391 |
"[| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R"
|
|
392 |
(fn major::prems=>
|
|
393 |
[ (rtac (major RS UnionE) 1),
|
|
394 |
(REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]);
|
|
395 |
|
|
396 |
|
|
397 |
(*** Rules for Intersections of families ***)
|
|
398 |
(* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *)
|
|
399 |
|
|
400 |
val INT_I = prove_goal ZF.thy
|
|
401 |
"[| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))"
|
|
402 |
(fn prems=>
|
|
403 |
[ (REPEAT (ares_tac (prems@[InterI,RepFunI]) 1
|
|
404 |
ORELSE eresolve_tac [RepFunE,ssubst] 1)) ]);
|
|
405 |
|
|
406 |
val INT_E = prove_goal ZF.thy
|
|
407 |
"[| b : (INT x:A. B(x)); a: A |] ==> b : B(a)"
|
|
408 |
(fn [major,minor]=>
|
|
409 |
[ (rtac (major RS InterD) 1),
|
|
410 |
(rtac (minor RS RepFunI) 1) ]);
|
|
411 |
|
|
412 |
|
|
413 |
(*** Rules for Powersets ***)
|
|
414 |
|
|
415 |
val PowI = prove_goal ZF.thy "A <= B ==> A : Pow(B)"
|
|
416 |
(fn [prem]=> [ (rtac (prem RS (power_set RS iffD2)) 1) ]);
|
|
417 |
|
|
418 |
val PowD = prove_goal ZF.thy "A : Pow(B) ==> A<=B"
|
|
419 |
(fn [major]=> [ (rtac (major RS (power_set RS iffD1)) 1) ]);
|
|
420 |
|
|
421 |
|
|
422 |
(*** Rules for the empty set ***)
|
|
423 |
|
|
424 |
(*The set {x:0.False} is empty; by foundation it equals 0
|
|
425 |
See Suppes, page 21.*)
|
|
426 |
val emptyE = prove_goal ZF.thy "a:0 ==> P"
|
|
427 |
(fn [major]=>
|
|
428 |
[ (rtac (foundation RS disjE) 1),
|
|
429 |
(etac (equalityD2 RS subsetD RS CollectD2 RS FalseE) 1),
|
|
430 |
(rtac major 1),
|
|
431 |
(etac bexE 1),
|
|
432 |
(etac (CollectD2 RS FalseE) 1) ]);
|
|
433 |
|
|
434 |
val empty_subsetI = prove_goal ZF.thy "0 <= A"
|
|
435 |
(fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
|
|
436 |
|
|
437 |
val equals0I = prove_goal ZF.thy "[| !!y. y:A ==> False |] ==> A=0"
|
|
438 |
(fn prems=>
|
|
439 |
[ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1
|
|
440 |
ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
|
|
441 |
|
|
442 |
val equals0D = prove_goal ZF.thy "[| A=0; a:A |] ==> P"
|
|
443 |
(fn [major,minor]=>
|
|
444 |
[ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
|
|
445 |
|
|
446 |
val lemmas_cs = FOL_cs
|
|
447 |
addSIs [ballI, InterI, CollectI, PowI, subsetI]
|
|
448 |
addIs [bexI, UnionI, ReplaceI, RepFunI]
|
|
449 |
addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE,
|
|
450 |
CollectE, emptyE]
|
|
451 |
addEs [rev_ballE, InterD, make_elim InterD, subsetD, subsetCE];
|
|
452 |
|
|
453 |
end;
|
|
454 |
|
|
455 |
open ZF_Lemmas;
|