0
|
1 |
(* Title: ZF/ex/integ.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
The integers as equivalence classes over nat*nat.
|
|
7 |
*)
|
|
8 |
|
|
9 |
Integ = Equiv + Arith +
|
|
10 |
consts
|
|
11 |
intrel,integ:: "i"
|
|
12 |
znat :: "i=>i" ("$# _" [80] 80)
|
|
13 |
zminus :: "i=>i" ("$~ _" [80] 80)
|
|
14 |
znegative :: "i=>o"
|
|
15 |
zmagnitude :: "i=>i"
|
|
16 |
"$*" :: "[i,i]=>i" (infixl 70)
|
|
17 |
"$'/" :: "[i,i]=>i" (infixl 70)
|
|
18 |
"$'/'/" :: "[i,i]=>i" (infixl 70)
|
|
19 |
"$+" :: "[i,i]=>i" (infixl 65)
|
|
20 |
"$-" :: "[i,i]=>i" (infixl 65)
|
|
21 |
"$<" :: "[i,i]=>o" (infixl 50)
|
|
22 |
|
|
23 |
rules
|
|
24 |
|
|
25 |
intrel_def
|
|
26 |
"intrel == {p:(nat*nat)*(nat*nat). \
|
|
27 |
\ EX x1 y1 x2 y2. p=<<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1}"
|
|
28 |
|
|
29 |
integ_def "integ == (nat*nat)/intrel"
|
|
30 |
|
|
31 |
znat_def "$# m == intrel `` {<m,0>}"
|
|
32 |
|
|
33 |
zminus_def "$~ Z == UN p:Z. split(%x y. intrel``{<y,x>}, p)"
|
|
34 |
|
|
35 |
znegative_def
|
|
36 |
"znegative(Z) == EX x y. x:y & y:nat & <x,y>:Z"
|
|
37 |
|
|
38 |
zmagnitude_def
|
|
39 |
"zmagnitude(Z) == UN p:Z. split(%x y. (y#-x) #+ (x#-y), p)"
|
|
40 |
|
|
41 |
zadd_def
|
|
42 |
"Z1 $+ Z2 == \
|
|
43 |
\ UN p1:Z1. UN p2:Z2. split(%x1 y1. split(%x2 y2. \
|
|
44 |
\ intrel``{<x1#+x2, y1#+y2>}, p2), p1)"
|
|
45 |
|
|
46 |
zdiff_def "Z1 $- Z2 == Z1 $+ zminus(Z2)"
|
|
47 |
zless_def "Z1 $< Z2 == znegative(Z1 $- Z2)"
|
|
48 |
|
|
49 |
zmult_def
|
|
50 |
"Z1 $* Z2 == \
|
|
51 |
\ UN p1:Z1. UN p2:Z2. split(%x1 y1. split(%x2 y2. \
|
|
52 |
\ intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1)"
|
|
53 |
|
|
54 |
end
|