0
|
1 |
(* Title: ZF/qpair.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
For qpair.thy.
|
|
7 |
|
|
8 |
Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
|
|
9 |
structures in ZF. Does not precisely follow Quine's construction. Thanks
|
|
10 |
to Thomas Forster for suggesting this approach!
|
|
11 |
|
|
12 |
W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
|
|
13 |
1966.
|
|
14 |
|
|
15 |
Many proofs are borrowed from pair.ML and sum.ML
|
|
16 |
|
|
17 |
Do we EVER have rank(a) < rank(<a;b>) ? Perhaps if the latter rank
|
|
18 |
is not a limit ordinal?
|
|
19 |
*)
|
|
20 |
|
|
21 |
|
|
22 |
open QPair;
|
|
23 |
|
|
24 |
(**** Quine ordered pairing ****)
|
|
25 |
|
|
26 |
(** Lemmas for showing that <a;b> uniquely determines a and b **)
|
|
27 |
|
|
28 |
val QPair_iff = prove_goalw QPair.thy [QPair_def]
|
|
29 |
"<a;b> = <c;d> <-> a=c & b=d"
|
|
30 |
(fn _=> [rtac sum_equal_iff 1]);
|
|
31 |
|
|
32 |
val QPair_inject = standard (QPair_iff RS iffD1 RS conjE);
|
|
33 |
|
|
34 |
val QPair_inject1 = prove_goal QPair.thy "<a;b> = <c;d> ==> a=c"
|
|
35 |
(fn [major]=>
|
|
36 |
[ (rtac (major RS QPair_inject) 1), (assume_tac 1) ]);
|
|
37 |
|
|
38 |
val QPair_inject2 = prove_goal QPair.thy "<a;b> = <c;d> ==> b=d"
|
|
39 |
(fn [major]=>
|
|
40 |
[ (rtac (major RS QPair_inject) 1), (assume_tac 1) ]);
|
|
41 |
|
|
42 |
|
|
43 |
(*** QSigma: Disjoint union of a family of sets
|
|
44 |
Generalizes Cartesian product ***)
|
|
45 |
|
|
46 |
val QSigmaI = prove_goalw QPair.thy [QSigma_def]
|
|
47 |
"[| a:A; b:B(a) |] ==> <a;b> : QSigma(A,B)"
|
|
48 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[singletonI,UN_I]) 1)) ]);
|
|
49 |
|
|
50 |
(*The general elimination rule*)
|
|
51 |
val QSigmaE = prove_goalw QPair.thy [QSigma_def]
|
|
52 |
"[| c: QSigma(A,B); \
|
|
53 |
\ !!x y.[| x:A; y:B(x); c=<x;y> |] ==> P \
|
|
54 |
\ |] ==> P"
|
|
55 |
(fn major::prems=>
|
|
56 |
[ (cut_facts_tac [major] 1),
|
|
57 |
(REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]);
|
|
58 |
|
|
59 |
(** Elimination rules for <a;b>:A*B -- introducing no eigenvariables **)
|
|
60 |
|
|
61 |
val QSigmaE2 =
|
|
62 |
rule_by_tactic (REPEAT_FIRST (etac QPair_inject ORELSE' bound_hyp_subst_tac)
|
|
63 |
THEN prune_params_tac)
|
|
64 |
(read_instantiate [("c","<a;b>")] QSigmaE);
|
|
65 |
|
|
66 |
val QSigmaD1 = prove_goal QPair.thy "<a;b> : QSigma(A,B) ==> a : A"
|
|
67 |
(fn [major]=>
|
|
68 |
[ (rtac (major RS QSigmaE2) 1), (assume_tac 1) ]);
|
|
69 |
|
|
70 |
val QSigmaD2 = prove_goal QPair.thy "<a;b> : QSigma(A,B) ==> b : B(a)"
|
|
71 |
(fn [major]=>
|
|
72 |
[ (rtac (major RS QSigmaE2) 1), (assume_tac 1) ]);
|
|
73 |
|
|
74 |
val QSigma_cong = prove_goalw QPair.thy [QSigma_def]
|
|
75 |
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \
|
|
76 |
\ QSigma(A,B) = QSigma(A',B')"
|
|
77 |
(fn prems=> [ (prove_cong_tac (prems@[RepFun_cong]) 1) ]);
|
|
78 |
|
|
79 |
val QSigma_empty1 = prove_goal QPair.thy "QSigma(0,B) = 0"
|
|
80 |
(fn _ => [ (fast_tac (ZF_cs addIs [equalityI] addSEs [QSigmaE]) 1) ]);
|
|
81 |
|
|
82 |
val QSigma_empty2 = prove_goal QPair.thy "A <*> 0 = 0"
|
|
83 |
(fn _ => [ (fast_tac (ZF_cs addIs [equalityI] addSEs [QSigmaE]) 1) ]);
|
|
84 |
|
|
85 |
|
|
86 |
(*** Eliminator - qsplit ***)
|
|
87 |
|
|
88 |
val qsplit = prove_goalw QPair.thy [qsplit_def]
|
|
89 |
"qsplit(%x y.c(x,y), <a;b>) = c(a,b)"
|
|
90 |
(fn _ => [ (fast_tac (ZF_cs addIs [the_equality] addEs [QPair_inject]) 1) ]);
|
|
91 |
|
|
92 |
val qsplit_type = prove_goal QPair.thy
|
|
93 |
"[| p:QSigma(A,B); \
|
|
94 |
\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x;y>) \
|
|
95 |
\ |] ==> qsplit(%x y.c(x,y), p) : C(p)"
|
|
96 |
(fn major::prems=>
|
|
97 |
[ (rtac (major RS QSigmaE) 1),
|
|
98 |
(etac ssubst 1),
|
|
99 |
(REPEAT (ares_tac (prems @ [qsplit RS ssubst]) 1)) ]);
|
|
100 |
|
|
101 |
(*This congruence rule uses NO typing information...*)
|
|
102 |
val qsplit_cong = prove_goalw QPair.thy [qsplit_def]
|
|
103 |
"[| p=p'; !!x y.c(x,y) = c'(x,y) |] ==> \
|
|
104 |
\ qsplit(%x y.c(x,y), p) = qsplit(%x y.c'(x,y), p')"
|
|
105 |
(fn prems=> [ (prove_cong_tac (prems@[the_cong]) 1) ]);
|
|
106 |
|
|
107 |
|
|
108 |
val qpair_cs = ZF_cs addSIs [QSigmaI] addSEs [QSigmaE2, QSigmaE, QPair_inject];
|
|
109 |
|
|
110 |
(*** qconverse ***)
|
|
111 |
|
|
112 |
val qconverseI = prove_goalw QPair.thy [qconverse_def]
|
|
113 |
"!!a b r. <a;b>:r ==> <b;a>:qconverse(r)"
|
|
114 |
(fn _ => [ (fast_tac qpair_cs 1) ]);
|
|
115 |
|
|
116 |
val qconverseD = prove_goalw QPair.thy [qconverse_def]
|
|
117 |
"!!a b r. <a;b> : qconverse(r) ==> <b;a> : r"
|
|
118 |
(fn _ => [ (fast_tac qpair_cs 1) ]);
|
|
119 |
|
|
120 |
val qconverseE = prove_goalw QPair.thy [qconverse_def]
|
|
121 |
"[| yx : qconverse(r); \
|
|
122 |
\ !!x y. [| yx=<y;x>; <x;y>:r |] ==> P \
|
|
123 |
\ |] ==> P"
|
|
124 |
(fn [major,minor]=>
|
|
125 |
[ (rtac (major RS ReplaceE) 1),
|
|
126 |
(REPEAT (eresolve_tac [exE, conjE, minor] 1)),
|
|
127 |
(hyp_subst_tac 1),
|
|
128 |
(assume_tac 1) ]);
|
|
129 |
|
|
130 |
val qconverse_cs = qpair_cs addSIs [qconverseI]
|
|
131 |
addSEs [qconverseD,qconverseE];
|
|
132 |
|
|
133 |
val qconverse_of_qconverse = prove_goal QPair.thy
|
|
134 |
"!!A B r. r<=QSigma(A,B) ==> qconverse(qconverse(r)) = r"
|
|
135 |
(fn _ => [ (fast_tac (qconverse_cs addSIs [equalityI]) 1) ]);
|
|
136 |
|
|
137 |
val qconverse_type = prove_goal QPair.thy
|
|
138 |
"!!A B r. r <= A <*> B ==> qconverse(r) <= B <*> A"
|
|
139 |
(fn _ => [ (fast_tac qconverse_cs 1) ]);
|
|
140 |
|
|
141 |
val qconverse_of_prod = prove_goal QPair.thy "qconverse(A <*> B) = B <*> A"
|
|
142 |
(fn _ => [ (fast_tac (qconverse_cs addSIs [equalityI]) 1) ]);
|
|
143 |
|
|
144 |
val qconverse_empty = prove_goal QPair.thy "qconverse(0) = 0"
|
|
145 |
(fn _ => [ (fast_tac (qconverse_cs addSIs [equalityI]) 1) ]);
|
|
146 |
|
|
147 |
|
|
148 |
(*** qsplit for predicates: result type o ***)
|
|
149 |
|
|
150 |
goalw QPair.thy [qfsplit_def] "!!R a b. R(a,b) ==> qfsplit(R, <a;b>)";
|
|
151 |
by (REPEAT (ares_tac [refl,exI,conjI] 1));
|
|
152 |
val qfsplitI = result();
|
|
153 |
|
|
154 |
val major::prems = goalw QPair.thy [qfsplit_def]
|
|
155 |
"[| qfsplit(R,z); !!x y. [| z = <x;y>; R(x,y) |] ==> P |] ==> P";
|
|
156 |
by (cut_facts_tac [major] 1);
|
|
157 |
by (REPEAT (eresolve_tac (prems@[asm_rl,exE,conjE]) 1));
|
|
158 |
val qfsplitE = result();
|
|
159 |
|
|
160 |
goal QPair.thy "!!R a b. qfsplit(R,<a;b>) ==> R(a,b)";
|
|
161 |
by (REPEAT (eresolve_tac [asm_rl,qfsplitE,QPair_inject,ssubst] 1));
|
|
162 |
val qfsplitD = result();
|
|
163 |
|
|
164 |
|
|
165 |
(**** The Quine-inspired notion of disjoint sum ****)
|
|
166 |
|
|
167 |
val qsum_defs = [qsum_def,QInl_def,QInr_def,qcase_def];
|
|
168 |
|
|
169 |
(** Introduction rules for the injections **)
|
|
170 |
|
|
171 |
goalw QPair.thy qsum_defs "!!a A B. a : A ==> QInl(a) : A <+> B";
|
|
172 |
by (REPEAT (ares_tac [UnI1,QSigmaI,singletonI] 1));
|
|
173 |
val QInlI = result();
|
|
174 |
|
|
175 |
goalw QPair.thy qsum_defs "!!b A B. b : B ==> QInr(b) : A <+> B";
|
|
176 |
by (REPEAT (ares_tac [UnI2,QSigmaI,singletonI] 1));
|
|
177 |
val QInrI = result();
|
|
178 |
|
|
179 |
(** Elimination rules **)
|
|
180 |
|
|
181 |
val major::prems = goalw QPair.thy qsum_defs
|
|
182 |
"[| u: A <+> B; \
|
|
183 |
\ !!x. [| x:A; u=QInl(x) |] ==> P; \
|
|
184 |
\ !!y. [| y:B; u=QInr(y) |] ==> P \
|
|
185 |
\ |] ==> P";
|
|
186 |
by (rtac (major RS UnE) 1);
|
|
187 |
by (REPEAT (rtac refl 1
|
|
188 |
ORELSE eresolve_tac (prems@[QSigmaE,singletonE,ssubst]) 1));
|
|
189 |
val qsumE = result();
|
|
190 |
|
|
191 |
(** QInjection and freeness rules **)
|
|
192 |
|
|
193 |
val [major] = goalw QPair.thy qsum_defs "QInl(a)=QInl(b) ==> a=b";
|
|
194 |
by (EVERY1 [rtac (major RS QPair_inject), assume_tac]);
|
|
195 |
val QInl_inject = result();
|
|
196 |
|
|
197 |
val [major] = goalw QPair.thy qsum_defs "QInr(a)=QInr(b) ==> a=b";
|
|
198 |
by (EVERY1 [rtac (major RS QPair_inject), assume_tac]);
|
|
199 |
val QInr_inject = result();
|
|
200 |
|
|
201 |
val [major] = goalw QPair.thy qsum_defs "QInl(a)=QInr(b) ==> P";
|
|
202 |
by (rtac (major RS QPair_inject) 1);
|
|
203 |
by (etac (sym RS one_neq_0) 1);
|
|
204 |
val QInl_neq_QInr = result();
|
|
205 |
|
|
206 |
val QInr_neq_QInl = sym RS QInl_neq_QInr;
|
|
207 |
|
|
208 |
(** Injection and freeness equivalences, for rewriting **)
|
|
209 |
|
|
210 |
goal QPair.thy "QInl(a)=QInl(b) <-> a=b";
|
|
211 |
by (rtac iffI 1);
|
|
212 |
by (REPEAT (eresolve_tac [QInl_inject,subst_context] 1));
|
|
213 |
val QInl_iff = result();
|
|
214 |
|
|
215 |
goal QPair.thy "QInr(a)=QInr(b) <-> a=b";
|
|
216 |
by (rtac iffI 1);
|
|
217 |
by (REPEAT (eresolve_tac [QInr_inject,subst_context] 1));
|
|
218 |
val QInr_iff = result();
|
|
219 |
|
|
220 |
goal QPair.thy "QInl(a)=QInr(b) <-> False";
|
|
221 |
by (rtac iffI 1);
|
|
222 |
by (REPEAT (eresolve_tac [QInl_neq_QInr,FalseE] 1));
|
|
223 |
val QInl_QInr_iff = result();
|
|
224 |
|
|
225 |
goal QPair.thy "QInr(b)=QInl(a) <-> False";
|
|
226 |
by (rtac iffI 1);
|
|
227 |
by (REPEAT (eresolve_tac [QInr_neq_QInl,FalseE] 1));
|
|
228 |
val QInr_QInl_iff = result();
|
|
229 |
|
|
230 |
val qsum_cs =
|
|
231 |
ZF_cs addIs [QInlI,QInrI] addSEs [qsumE,QInl_neq_QInr,QInr_neq_QInl]
|
|
232 |
addSDs [QInl_inject,QInr_inject];
|
|
233 |
|
|
234 |
(** <+> is itself injective... who cares?? **)
|
|
235 |
|
|
236 |
goal QPair.thy
|
|
237 |
"u: A <+> B <-> (EX x. x:A & u=QInl(x)) | (EX y. y:B & u=QInr(y))";
|
|
238 |
by (fast_tac qsum_cs 1);
|
|
239 |
val qsum_iff = result();
|
|
240 |
|
|
241 |
goal QPair.thy "A <+> B <= C <+> D <-> A<=C & B<=D";
|
|
242 |
by (fast_tac qsum_cs 1);
|
|
243 |
val qsum_subset_iff = result();
|
|
244 |
|
|
245 |
goal QPair.thy "A <+> B = C <+> D <-> A=C & B=D";
|
|
246 |
by (SIMP_TAC (ZF_ss addrews [extension,qsum_subset_iff]) 1);
|
|
247 |
by (fast_tac ZF_cs 1);
|
|
248 |
val qsum_equal_iff = result();
|
|
249 |
|
|
250 |
(*** Eliminator -- qcase ***)
|
|
251 |
|
|
252 |
goalw QPair.thy qsum_defs "qcase(c, d, QInl(a)) = c(a)";
|
|
253 |
by (rtac (qsplit RS trans) 1);
|
|
254 |
by (rtac cond_0 1);
|
|
255 |
val qcase_QInl = result();
|
|
256 |
|
|
257 |
goalw QPair.thy qsum_defs "qcase(c, d, QInr(b)) = d(b)";
|
|
258 |
by (rtac (qsplit RS trans) 1);
|
|
259 |
by (rtac cond_1 1);
|
|
260 |
val qcase_QInr = result();
|
|
261 |
|
|
262 |
val prems = goalw QPair.thy [qcase_def]
|
|
263 |
"[| u=u'; !!x. c(x)=c'(x); !!y. d(y)=d'(y) |] ==> \
|
|
264 |
\ qcase(c,d,u)=qcase(c',d',u')";
|
|
265 |
by (REPEAT (resolve_tac ([refl,qsplit_cong,cond_cong] @ prems) 1));
|
|
266 |
val qcase_cong = result();
|
|
267 |
|
|
268 |
val major::prems = goal QPair.thy
|
|
269 |
"[| u: A <+> B; \
|
|
270 |
\ !!x. x: A ==> c(x): C(QInl(x)); \
|
|
271 |
\ !!y. y: B ==> d(y): C(QInr(y)) \
|
|
272 |
\ |] ==> qcase(c,d,u) : C(u)";
|
|
273 |
by (rtac (major RS qsumE) 1);
|
|
274 |
by (ALLGOALS (etac ssubst));
|
|
275 |
by (ALLGOALS (ASM_SIMP_TAC (ZF_ss addrews
|
|
276 |
(prems@[qcase_QInl,qcase_QInr]))));
|
|
277 |
val qcase_type = result();
|
|
278 |
|
|
279 |
(** Rules for the Part primitive **)
|
|
280 |
|
|
281 |
goal QPair.thy "Part(A <+> B,QInl) = {QInl(x). x: A}";
|
|
282 |
by (fast_tac (qsum_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
|
|
283 |
val Part_QInl = result();
|
|
284 |
|
|
285 |
goal QPair.thy "Part(A <+> B,QInr) = {QInr(y). y: B}";
|
|
286 |
by (fast_tac (qsum_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
|
|
287 |
val Part_QInr = result();
|
|
288 |
|
|
289 |
goal QPair.thy "Part(A <+> B, %x.QInr(h(x))) = {QInr(y). y: Part(B,h)}";
|
|
290 |
by (fast_tac (qsum_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
|
|
291 |
val Part_QInr2 = result();
|
|
292 |
|
|
293 |
goal QPair.thy "!!A B C. C <= A <+> B ==> Part(C,QInl) Un Part(C,QInr) = C";
|
|
294 |
by (rtac equalityI 1);
|
|
295 |
by (rtac Un_least 1);
|
|
296 |
by (rtac Part_subset 1);
|
|
297 |
by (rtac Part_subset 1);
|
|
298 |
by (fast_tac (ZF_cs addIs [PartI] addSEs [qsumE]) 1);
|
|
299 |
val Part_qsum_equality = result();
|