|
63070
|
1 |
(* Author: Tobias Nipkow *)
|
|
|
2 |
|
|
|
3 |
theory Hoare_Total_EX imports Hoare_Sound_Complete Hoare_Examples begin
|
|
|
4 |
|
|
|
5 |
subsection "Hoare Logic for Total Correctness"
|
|
|
6 |
|
|
|
7 |
text{* This is the standard set of rules that you find in many publications.
|
|
|
8 |
The While-rule is different from the one in Concrete Semantics in that the
|
|
|
9 |
invariant is indexed by natural numbers and goes down by 1 with
|
|
|
10 |
every iteration. The completeness proof is easier but the rule is harder
|
|
|
11 |
to apply in program proofs. *}
|
|
|
12 |
|
|
|
13 |
definition hoare_tvalid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool"
|
|
|
14 |
("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where
|
|
|
15 |
"\<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> (\<forall>s. P s \<longrightarrow> (\<exists>t. (c,s) \<Rightarrow> t \<and> Q t))"
|
|
|
16 |
|
|
|
17 |
inductive
|
|
|
18 |
hoaret :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile>\<^sub>t ({(1_)}/ (_)/ {(1_)})" 50)
|
|
|
19 |
where
|
|
|
20 |
|
|
|
21 |
Skip: "\<turnstile>\<^sub>t {P} SKIP {P}" |
|
|
|
22 |
|
|
|
23 |
Assign: "\<turnstile>\<^sub>t {\<lambda>s. P(s[a/x])} x::=a {P}" |
|
|
|
24 |
|
|
|
25 |
Seq: "\<lbrakk> \<turnstile>\<^sub>t {P\<^sub>1} c\<^sub>1 {P\<^sub>2}; \<turnstile>\<^sub>t {P\<^sub>2} c\<^sub>2 {P\<^sub>3} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P\<^sub>1} c\<^sub>1;;c\<^sub>2 {P\<^sub>3}" |
|
|
|
26 |
|
|
|
27 |
If: "\<lbrakk> \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s} c\<^sub>1 {Q}; \<turnstile>\<^sub>t {\<lambda>s. P s \<and> \<not> bval b s} c\<^sub>2 {Q} \<rbrakk>
|
|
|
28 |
\<Longrightarrow> \<turnstile>\<^sub>t {P} IF b THEN c\<^sub>1 ELSE c\<^sub>2 {Q}" |
|
|
|
29 |
|
|
|
30 |
While:
|
|
|
31 |
"\<lbrakk> \<And>n::nat. \<turnstile>\<^sub>t {P (Suc n)} c {P n};
|
|
|
32 |
\<forall>n s. P (Suc n) s \<longrightarrow> bval b s; \<forall>s. P 0 s \<longrightarrow> \<not> bval b s \<rbrakk>
|
|
|
33 |
\<Longrightarrow> \<turnstile>\<^sub>t {\<lambda>s. \<exists>n. P n s} WHILE b DO c {P 0}" |
|
|
|
34 |
|
|
|
35 |
conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow>
|
|
|
36 |
\<turnstile>\<^sub>t {P'}c{Q'}"
|
|
|
37 |
|
|
|
38 |
text{* Building in the consequence rule: *}
|
|
|
39 |
|
|
|
40 |
lemma strengthen_pre:
|
|
|
41 |
"\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P} c {Q} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P'} c {Q}"
|
|
|
42 |
by (metis conseq)
|
|
|
43 |
|
|
|
44 |
lemma weaken_post:
|
|
|
45 |
"\<lbrakk> \<turnstile>\<^sub>t {P} c {Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P} c {Q'}"
|
|
|
46 |
by (metis conseq)
|
|
|
47 |
|
|
|
48 |
lemma Assign': "\<forall>s. P s \<longrightarrow> Q(s[a/x]) \<Longrightarrow> \<turnstile>\<^sub>t {P} x ::= a {Q}"
|
|
|
49 |
by (simp add: strengthen_pre[OF _ Assign])
|
|
|
50 |
|
|
|
51 |
text{* The soundness theorem: *}
|
|
|
52 |
|
|
|
53 |
theorem hoaret_sound: "\<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<Turnstile>\<^sub>t {P}c{Q}"
|
|
|
54 |
proof(unfold hoare_tvalid_def, induction rule: hoaret.induct)
|
|
|
55 |
case (While P c b)
|
|
|
56 |
{
|
|
|
57 |
fix n s
|
|
|
58 |
have "\<lbrakk> P n s \<rbrakk> \<Longrightarrow> \<exists>t. (WHILE b DO c, s) \<Rightarrow> t \<and> P 0 t"
|
|
|
59 |
proof(induction "n" arbitrary: s)
|
|
|
60 |
case 0 thus ?case using While.hyps(3) WhileFalse by blast
|
|
|
61 |
next
|
|
|
62 |
case (Suc n)
|
|
|
63 |
thus ?case by (meson While.IH While.hyps(2) WhileTrue)
|
|
|
64 |
qed
|
|
|
65 |
}
|
|
|
66 |
thus ?case by auto
|
|
|
67 |
next
|
|
|
68 |
case If thus ?case by auto blast
|
|
|
69 |
qed fastforce+
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
definition wpt :: "com \<Rightarrow> assn \<Rightarrow> assn" ("wp\<^sub>t") where
|
|
|
73 |
"wp\<^sub>t c Q = (\<lambda>s. \<exists>t. (c,s) \<Rightarrow> t \<and> Q t)"
|
|
|
74 |
|
|
|
75 |
lemma [simp]: "wp\<^sub>t SKIP Q = Q"
|
|
|
76 |
by(auto intro!: ext simp: wpt_def)
|
|
|
77 |
|
|
|
78 |
lemma [simp]: "wp\<^sub>t (x ::= e) Q = (\<lambda>s. Q(s(x := aval e s)))"
|
|
|
79 |
by(auto intro!: ext simp: wpt_def)
|
|
|
80 |
|
|
|
81 |
lemma [simp]: "wp\<^sub>t (c\<^sub>1;;c\<^sub>2) Q = wp\<^sub>t c\<^sub>1 (wp\<^sub>t c\<^sub>2 Q)"
|
|
|
82 |
unfolding wpt_def
|
|
|
83 |
apply(rule ext)
|
|
|
84 |
apply auto
|
|
|
85 |
done
|
|
|
86 |
|
|
|
87 |
lemma [simp]:
|
|
|
88 |
"wp\<^sub>t (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q = (\<lambda>s. wp\<^sub>t (if bval b s then c\<^sub>1 else c\<^sub>2) Q s)"
|
|
|
89 |
apply(unfold wpt_def)
|
|
|
90 |
apply(rule ext)
|
|
|
91 |
apply auto
|
|
|
92 |
done
|
|
|
93 |
|
|
|
94 |
|
|
|
95 |
text{* Function @{text wpw} computes the weakest precondition of a While-loop
|
|
|
96 |
that is unfolded a fixed number of times. *}
|
|
|
97 |
|
|
|
98 |
fun wpw :: "bexp \<Rightarrow> com \<Rightarrow> nat \<Rightarrow> assn \<Rightarrow> assn" where
|
|
|
99 |
"wpw b c 0 Q s = (\<not> bval b s \<and> Q s)" |
|
|
|
100 |
"wpw b c (Suc n) Q s = (bval b s \<and> (\<exists>s'. (c,s) \<Rightarrow> s' \<and> wpw b c n Q s'))"
|
|
|
101 |
|
|
|
102 |
lemma WHILE_Its: "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> Q t \<Longrightarrow> \<exists>n. wpw b c n Q s"
|
|
|
103 |
proof(induction "WHILE b DO c" s t rule: big_step_induct)
|
|
|
104 |
case WhileFalse thus ?case using wpw.simps(1) by blast
|
|
|
105 |
next
|
|
|
106 |
case WhileTrue thus ?case using wpw.simps(2) by blast
|
|
|
107 |
qed
|
|
|
108 |
|
|
|
109 |
lemma wpt_is_pre: "\<turnstile>\<^sub>t {wp\<^sub>t c Q} c {Q}"
|
|
|
110 |
proof (induction c arbitrary: Q)
|
|
|
111 |
case SKIP show ?case by (auto intro:hoaret.Skip)
|
|
|
112 |
next
|
|
|
113 |
case Assign show ?case by (auto intro:hoaret.Assign)
|
|
|
114 |
next
|
|
|
115 |
case Seq thus ?case by (auto intro:hoaret.Seq)
|
|
|
116 |
next
|
|
|
117 |
case If thus ?case by (auto intro:hoaret.If hoaret.conseq)
|
|
|
118 |
next
|
|
|
119 |
case (While b c)
|
|
|
120 |
let ?w = "WHILE b DO c"
|
|
|
121 |
have c1: "\<forall>s. wp\<^sub>t ?w Q s \<longrightarrow> (\<exists>n. wpw b c n Q s)"
|
|
|
122 |
unfolding wpt_def by (metis WHILE_Its)
|
|
|
123 |
have c3: "\<forall>s. wpw b c 0 Q s \<longrightarrow> Q s" by simp
|
|
|
124 |
have w2: "\<forall>n s. wpw b c (Suc n) Q s \<longrightarrow> bval b s" by simp
|
|
|
125 |
have w3: "\<forall>s. wpw b c 0 Q s \<longrightarrow> \<not> bval b s" by simp
|
|
|
126 |
{ fix n
|
|
|
127 |
have 1: "\<forall>s. wpw b c (Suc n) Q s \<longrightarrow> (\<exists>t. (c, s) \<Rightarrow> t \<and> wpw b c n Q t)"
|
|
|
128 |
by simp
|
|
|
129 |
note strengthen_pre[OF 1 While.IH[of "wpw b c n Q", unfolded wpt_def]]
|
|
|
130 |
}
|
|
|
131 |
from conseq[OF c1 hoaret.While[OF this w2 w3] c3]
|
|
|
132 |
show ?case .
|
|
|
133 |
qed
|
|
|
134 |
|
|
|
135 |
theorem hoaret_complete: "\<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q}"
|
|
|
136 |
apply(rule strengthen_pre[OF _ wpt_is_pre])
|
|
|
137 |
apply(auto simp: hoare_tvalid_def wpt_def)
|
|
|
138 |
done
|
|
|
139 |
|
|
|
140 |
corollary hoaret_sound_complete: "\<turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> \<Turnstile>\<^sub>t {P}c{Q}"
|
|
|
141 |
by (metis hoaret_sound hoaret_complete)
|
|
|
142 |
|
|
|
143 |
end
|