| author | paulson <lp15@cam.ac.uk> | 
| Wed, 04 Jul 2018 11:00:06 +0100 | |
| changeset 68586 | 006da53a8ac1 | 
| parent 68072 | 493b818e8e10 | 
| child 68973 | a1e26440efb8 | 
| child 68975 | 5ce4d117cea7 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/HOL.thy | 
| 11750 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 923 | 4 | |
| 60758 | 5 | section \<open>The basis of Higher-Order Logic\<close> | 
| 923 | 6 | |
| 15131 | 7 | theory HOL | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 8 | imports Pure "~~/src/Tools/Code_Generator" | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46497diff
changeset | 9 | keywords | 
| 52432 | 10 | "try" "solve_direct" "quickcheck" "print_coercions" "print_claset" | 
| 11 | "print_induct_rules" :: diag and | |
| 47657 
1ba213363d0c
moved modules with only vague relation to the code generator to theory HOL rather than theory Code_Generator
 haftmann parents: 
46973diff
changeset | 12 | "quickcheck_params" :: thy_decl | 
| 15131 | 13 | begin | 
| 2260 | 14 | |
| 48891 | 15 | ML_file "~~/src/Tools/misc_legacy.ML" | 
| 16 | ML_file "~~/src/Tools/try.ML" | |
| 17 | ML_file "~~/src/Tools/quickcheck.ML" | |
| 18 | ML_file "~~/src/Tools/solve_direct.ML" | |
| 19 | ML_file "~~/src/Tools/IsaPlanner/zipper.ML" | |
| 20 | ML_file "~~/src/Tools/IsaPlanner/isand.ML" | |
| 21 | ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML" | |
| 22 | ML_file "~~/src/Provers/hypsubst.ML" | |
| 23 | ML_file "~~/src/Provers/splitter.ML" | |
| 24 | ML_file "~~/src/Provers/classical.ML" | |
| 25 | ML_file "~~/src/Provers/blast.ML" | |
| 26 | ML_file "~~/src/Provers/clasimp.ML" | |
| 27 | ML_file "~~/src/Tools/eqsubst.ML" | |
| 28 | ML_file "~~/src/Provers/quantifier1.ML" | |
| 29 | ML_file "~~/src/Tools/atomize_elim.ML" | |
| 30 | ML_file "~~/src/Tools/cong_tac.ML" | |
| 67149 | 31 | ML_file "~~/src/Tools/intuitionistic.ML" setup \<open>Intuitionistic.method_setup \<^binding>\<open>iprover\<close>\<close> | 
| 48891 | 32 | ML_file "~~/src/Tools/project_rule.ML" | 
| 33 | ML_file "~~/src/Tools/subtyping.ML" | |
| 34 | ML_file "~~/src/Tools/case_product.ML" | |
| 35 | ||
| 30165 
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
 wenzelm parents: 
30160diff
changeset | 36 | |
| 67149 | 37 | ML \<open>Plugin_Name.declare_setup \<^binding>\<open>extraction\<close>\<close> | 
| 58659 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 38 | |
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 39 | ML \<open> | 
| 67149 | 40 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_random\<close>; | 
| 41 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_exhaustive\<close>; | |
| 42 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_bounded_forall\<close>; | |
| 43 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_full_exhaustive\<close>; | |
| 44 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_narrowing\<close>; | |
| 58659 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 45 | \<close> | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 46 | ML \<open> | 
| 67149 | 47 | Plugin_Name.define_setup \<^binding>\<open>quickcheck\<close> | 
| 58659 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 48 |    [@{plugin quickcheck_exhaustive},
 | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 49 |     @{plugin quickcheck_random},
 | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 50 |     @{plugin quickcheck_bounded_forall},
 | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 51 |     @{plugin quickcheck_full_exhaustive},
 | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 52 |     @{plugin quickcheck_narrowing}]
 | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 53 | \<close> | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 54 | |
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 55 | |
| 60758 | 56 | subsection \<open>Primitive logic\<close> | 
| 11750 | 57 | |
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 58 | text \<open> | 
| 67299 | 59 | The definition of the logic is based on Mike Gordon's technical report @{cite "Gordon-TR68"} that
 | 
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 60 | describes the first implementation of HOL. However, there are a number of differences. | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 61 | In particular, we start with the definite description operator and introduce Hilbert's \<open>\<epsilon>\<close> operator | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 62 | only much later. Moreover, axiom \<open>(P \<longrightarrow> Q) \<longrightarrow> (Q \<longrightarrow> P) \<longrightarrow> (P = Q)\<close> is derived from the other | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 63 | axioms. The fact that this axiom is derivable was first noticed by Bruno Barras (for Mike Gordon's | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 64 | line of HOL systems) and later independently by Alexander Maletzky (for Isabelle/HOL). | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 65 | \<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 66 | |
| 60758 | 67 | subsubsection \<open>Core syntax\<close> | 
| 2260 | 68 | |
| 67149 | 69 | setup \<open>Axclass.class_axiomatization (\<^binding>\<open>type\<close>, [])\<close> | 
| 36452 | 70 | default_sort type | 
| 60758 | 71 | setup \<open>Object_Logic.add_base_sort @{sort type}\<close>
 | 
| 25460 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 72 | |
| 55383 | 73 | axiomatization where fun_arity: "OFCLASS('a \<Rightarrow> 'b, type_class)"
 | 
| 74 | instance "fun" :: (type, type) type by (rule fun_arity) | |
| 75 | ||
| 76 | axiomatization where itself_arity: "OFCLASS('a itself, type_class)"
 | |
| 77 | instance itself :: (type) type by (rule itself_arity) | |
| 25460 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 78 | |
| 7357 | 79 | typedecl bool | 
| 923 | 80 | |
| 62151 | 81 | judgment Trueprop :: "bool \<Rightarrow> prop"  ("(_)" 5)
 | 
| 82 | ||
| 83 | axiomatization implies :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longrightarrow>" 25) | |
| 84 | and eq :: "['a, 'a] \<Rightarrow> bool" (infixl "=" 50) | |
| 85 |   and The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | |
| 86 | ||
| 923 | 87 | |
| 62151 | 88 | subsubsection \<open>Defined connectives and quantifiers\<close> | 
| 89 | ||
| 90 | definition True :: bool | |
| 91 | where "True \<equiv> ((\<lambda>x::bool. x) = (\<lambda>x. x))" | |
| 92 | ||
| 93 | definition All :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<forall>" 10)
 | |
| 94 | where "All P \<equiv> (P = (\<lambda>x. True))" | |
| 46973 | 95 | |
| 62151 | 96 | definition Ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>" 10)
 | 
| 97 | where "Ex P \<equiv> \<forall>Q. (\<forall>x. P x \<longrightarrow> Q) \<longrightarrow> Q" | |
| 98 | ||
| 99 | definition False :: bool | |
| 100 | where "False \<equiv> (\<forall>P. P)" | |
| 101 | ||
| 102 | definition Not :: "bool \<Rightarrow> bool"  ("\<not> _" [40] 40)
 | |
| 103 | where not_def: "\<not> P \<equiv> P \<longrightarrow> False" | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 104 | |
| 62151 | 105 | definition conj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<and>" 35) | 
| 106 | where and_def: "P \<and> Q \<equiv> \<forall>R. (P \<longrightarrow> Q \<longrightarrow> R) \<longrightarrow> R" | |
| 38555 | 107 | |
| 62151 | 108 | definition disj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<or>" 30) | 
| 109 | where or_def: "P \<or> Q \<equiv> \<forall>R. (P \<longrightarrow> R) \<longrightarrow> (Q \<longrightarrow> R) \<longrightarrow> R" | |
| 110 | ||
| 63909 | 111 | definition Ex1 :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 62151 | 112 | where "Ex1 P \<equiv> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x)" | 
| 923 | 113 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 114 | |
| 60758 | 115 | subsubsection \<open>Additional concrete syntax\<close> | 
| 2260 | 116 | |
| 63909 | 117 | syntax (ASCII) | 
| 118 |   "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3EX! _./ _)" [0, 10] 10)
 | |
| 119 | syntax (input) | |
| 120 |   "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3?! _./ _)" [0, 10] 10)
 | |
| 121 | syntax "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<exists>!_./ _)" [0, 10] 10)
 | |
| 122 | translations "\<exists>!x. P" \<rightleftharpoons> "CONST Ex1 (\<lambda>x. P)" | |
| 123 | ||
| 124 | print_translation \<open> | |
| 125 |  [Syntax_Trans.preserve_binder_abs_tr' @{const_syntax Ex1} @{syntax_const "_Ex1"}]
 | |
| 126 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | |
| 127 | ||
| 128 | ||
| 63912 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 129 | syntax | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 130 |   "_Not_Ex" :: "idts \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<nexists>_./ _)" [0, 10] 10)
 | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 131 |   "_Not_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<nexists>!_./ _)" [0, 10] 10)
 | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 132 | translations | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 133 | "\<nexists>x. P" \<rightleftharpoons> "\<not> (\<exists>x. P)" | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 134 | "\<nexists>!x. P" \<rightleftharpoons> "\<not> (\<exists>!x. P)" | 
| 62522 | 135 | |
| 136 | ||
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 137 | abbreviation not_equal :: "['a, 'a] \<Rightarrow> bool" (infixl "\<noteq>" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 138 | where "x \<noteq> y \<equiv> \<not> (x = y)" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 139 | |
| 21210 | 140 | notation (output) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 141 | eq (infix "=" 50) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 142 | not_equal (infix "\<noteq>" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 143 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 144 | notation (ASCII output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 145 | not_equal (infix "~=" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 146 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 147 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 148 |   Not  ("~ _" [40] 40) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 149 | conj (infixr "&" 35) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 150 | disj (infixr "|" 30) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 151 | implies (infixr "-->" 25) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 152 | not_equal (infixl "~=" 50) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 153 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 154 | abbreviation (iff) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 155 | iff :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longleftrightarrow>" 25) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 156 | where "A \<longleftrightarrow> B \<equiv> A = B" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 157 | |
| 60759 | 158 | syntax "_The" :: "[pttrn, bool] \<Rightarrow> 'a"  ("(3THE _./ _)" [0, 10] 10)
 | 
| 159 | translations "THE x. P" \<rightleftharpoons> "CONST The (\<lambda>x. P)" | |
| 60758 | 160 | print_translation \<open> | 
| 52143 | 161 |   [(@{const_syntax The}, fn _ => fn [Abs abs] =>
 | 
| 46125 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 162 | let val (x, t) = Syntax_Trans.atomic_abs_tr' abs | 
| 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 163 |       in Syntax.const @{syntax_const "_The"} $ x $ t end)]
 | 
| 61799 | 164 | \<close> \<comment> \<open>To avoid eta-contraction of body\<close> | 
| 923 | 165 | |
| 46125 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 166 | nonterminal letbinds and letbind | 
| 923 | 167 | syntax | 
| 60759 | 168 |   "_bind"       :: "[pttrn, 'a] \<Rightarrow> letbind"              ("(2_ =/ _)" 10)
 | 
| 169 |   ""            :: "letbind \<Rightarrow> letbinds"                 ("_")
 | |
| 170 |   "_binds"      :: "[letbind, letbinds] \<Rightarrow> letbinds"     ("_;/ _")
 | |
| 171 |   "_Let"        :: "[letbinds, 'a] \<Rightarrow> 'a"                ("(let (_)/ in (_))" [0, 10] 10)
 | |
| 923 | 172 | |
| 46125 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 173 | nonterminal case_syn and cases_syn | 
| 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 174 | syntax | 
| 60759 | 175 |   "_case_syntax" :: "['a, cases_syn] \<Rightarrow> 'b"  ("(case _ of/ _)" 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 176 |   "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ \<Rightarrow>/ _)" 10)
 | 
| 60759 | 177 |   "" :: "case_syn \<Rightarrow> cases_syn"  ("_")
 | 
| 178 |   "_case2" :: "[case_syn, cases_syn] \<Rightarrow> cases_syn"  ("_/ | _")
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 179 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 180 |   "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ =>/ _)" 10)
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 181 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 182 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 183 | All (binder "ALL " 10) and | 
| 63909 | 184 | Ex (binder "EX " 10) | 
| 2372 | 185 | |
| 62521 | 186 | notation (input) | 
| 21524 | 187 | All (binder "! " 10) and | 
| 63909 | 188 | Ex (binder "? " 10) | 
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 189 | |
| 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 190 | |
| 60758 | 191 | subsubsection \<open>Axioms and basic definitions\<close> | 
| 2260 | 192 | |
| 46973 | 193 | axiomatization where | 
| 194 | refl: "t = (t::'a)" and | |
| 195 | subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" and | |
| 60759 | 196 | ext: "(\<And>x::'a. (f x ::'b) = g x) \<Longrightarrow> (\<lambda>x. f x) = (\<lambda>x. g x)" | 
| 61799 | 197 | \<comment> \<open>Extensionality is built into the meta-logic, and this rule expresses | 
| 15380 | 198 | a related property. It is an eta-expanded version of the traditional | 
| 60758 | 199 | rule, and similar to the ABS rule of HOL\<close> and | 
| 6289 | 200 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 201 | the_eq_trivial: "(THE x. x = a) = (a::'a)" | 
| 923 | 202 | |
| 46973 | 203 | axiomatization where | 
| 60759 | 204 | impI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<longrightarrow> Q" and | 
| 205 | mp: "\<lbrakk>P \<longrightarrow> Q; P\<rbrakk> \<Longrightarrow> Q" and | |
| 15380 | 206 | |
| 60759 | 207 | True_or_False: "(P = True) \<or> (P = False)" | 
| 15380 | 208 | |
| 46973 | 209 | definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10)
 | 
| 60759 | 210 | where "If P x y \<equiv> (THE z::'a. (P = True \<longrightarrow> z = x) \<and> (P = False \<longrightarrow> z = y))" | 
| 923 | 211 | |
| 46973 | 212 | definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b"
 | 
| 213 | where "Let s f \<equiv> f s" | |
| 38525 | 214 | |
| 215 | translations | |
| 60759 | 216 | "_Let (_binds b bs) e" \<rightleftharpoons> "_Let b (_Let bs e)" | 
| 217 | "let x = a in e" \<rightleftharpoons> "CONST Let a (\<lambda>x. e)" | |
| 38525 | 218 | |
| 46973 | 219 | axiomatization undefined :: 'a | 
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 220 | |
| 46973 | 221 | class default = fixes default :: 'a | 
| 4868 | 222 | |
| 11750 | 223 | |
| 60758 | 224 | subsection \<open>Fundamental rules\<close> | 
| 20944 | 225 | |
| 60758 | 226 | subsubsection \<open>Equality\<close> | 
| 20944 | 227 | |
| 60759 | 228 | lemma sym: "s = t \<Longrightarrow> t = s" | 
| 18457 | 229 | by (erule subst) (rule refl) | 
| 15411 | 230 | |
| 60759 | 231 | lemma ssubst: "t = s \<Longrightarrow> P s \<Longrightarrow> P t" | 
| 18457 | 232 | by (drule sym) (erule subst) | 
| 15411 | 233 | |
| 60759 | 234 | lemma trans: "\<lbrakk>r = s; s = t\<rbrakk> \<Longrightarrow> r = t" | 
| 18457 | 235 | by (erule subst) | 
| 15411 | 236 | |
| 60759 | 237 | lemma trans_sym [Pure.elim?]: "r = s \<Longrightarrow> t = s \<Longrightarrow> r = t" | 
| 40715 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 wenzelm parents: 
40582diff
changeset | 238 | by (rule trans [OF _ sym]) | 
| 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 wenzelm parents: 
40582diff
changeset | 239 | |
| 58826 | 240 | lemma meta_eq_to_obj_eq: | 
| 63575 | 241 | assumes "A \<equiv> B" | 
| 20944 | 242 | shows "A = B" | 
| 63575 | 243 | unfolding assms by (rule refl) | 
| 15411 | 244 | |
| 61799 | 245 | text \<open>Useful with \<open>erule\<close> for proving equalities from known equalities.\<close> | 
| 20944 | 246 | (* a = b | 
| 15411 | 247 | | | | 
| 248 | c = d *) | |
| 60759 | 249 | lemma box_equals: "\<lbrakk>a = b; a = c; b = d\<rbrakk> \<Longrightarrow> c = d" | 
| 63575 | 250 | apply (rule trans) | 
| 251 | apply (rule trans) | |
| 252 | apply (rule sym) | |
| 253 | apply assumption+ | |
| 254 | done | |
| 15411 | 255 | |
| 60758 | 256 | text \<open>For calculational reasoning:\<close> | 
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 257 | |
| 60759 | 258 | lemma forw_subst: "a = b \<Longrightarrow> P b \<Longrightarrow> P a" | 
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 259 | by (rule ssubst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 260 | |
| 60759 | 261 | lemma back_subst: "P a \<Longrightarrow> a = b \<Longrightarrow> P b" | 
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 262 | by (rule subst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 263 | |
| 15411 | 264 | |
| 60758 | 265 | subsubsection \<open>Congruence rules for application\<close> | 
| 15411 | 266 | |
| 61799 | 267 | text \<open>Similar to \<open>AP_THM\<close> in Gordon's HOL.\<close> | 
| 60759 | 268 | lemma fun_cong: "(f :: 'a \<Rightarrow> 'b) = g \<Longrightarrow> f x = g x" | 
| 63575 | 269 | apply (erule subst) | 
| 270 | apply (rule refl) | |
| 271 | done | |
| 15411 | 272 | |
| 61799 | 273 | text \<open>Similar to \<open>AP_TERM\<close> in Gordon's HOL and FOL's \<open>subst_context\<close>.\<close> | 
| 60759 | 274 | lemma arg_cong: "x = y \<Longrightarrow> f x = f y" | 
| 63575 | 275 | apply (erule subst) | 
| 276 | apply (rule refl) | |
| 277 | done | |
| 15411 | 278 | |
| 60759 | 279 | lemma arg_cong2: "\<lbrakk>a = b; c = d\<rbrakk> \<Longrightarrow> f a c = f b d" | 
| 63575 | 280 | apply (erule ssubst)+ | 
| 281 | apply (rule refl) | |
| 282 | done | |
| 15655 | 283 | |
| 60759 | 284 | lemma cong: "\<lbrakk>f = g; (x::'a) = y\<rbrakk> \<Longrightarrow> f x = g y" | 
| 63575 | 285 | apply (erule subst)+ | 
| 286 | apply (rule refl) | |
| 287 | done | |
| 15411 | 288 | |
| 60758 | 289 | ML \<open>fun cong_tac ctxt = Cong_Tac.cong_tac ctxt @{thm cong}\<close>
 | 
| 15411 | 290 | |
| 32733 
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
 wenzelm parents: 
32668diff
changeset | 291 | |
| 60758 | 292 | subsubsection \<open>Equality of booleans -- iff\<close> | 
| 15411 | 293 | |
| 60759 | 294 | lemma iffD2: "\<lbrakk>P = Q; Q\<rbrakk> \<Longrightarrow> P" | 
| 18457 | 295 | by (erule ssubst) | 
| 15411 | 296 | |
| 60759 | 297 | lemma rev_iffD2: "\<lbrakk>Q; P = Q\<rbrakk> \<Longrightarrow> P" | 
| 18457 | 298 | by (erule iffD2) | 
| 15411 | 299 | |
| 21504 | 300 | lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" | 
| 301 | by (drule sym) (rule iffD2) | |
| 302 | ||
| 303 | lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" | |
| 304 | by (drule sym) (rule rev_iffD2) | |
| 15411 | 305 | |
| 306 | lemma iffE: | |
| 60759 | 307 | assumes major: "P = Q" | 
| 308 | and minor: "\<lbrakk>P \<longrightarrow> Q; Q \<longrightarrow> P\<rbrakk> \<Longrightarrow> R" | |
| 18457 | 309 | shows R | 
| 310 | by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) | |
| 15411 | 311 | |
| 312 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 313 | subsubsection \<open>True (1)\<close> | 
| 15411 | 314 | |
| 63575 | 315 | lemma TrueI: True | 
| 21504 | 316 | unfolding True_def by (rule refl) | 
| 15411 | 317 | |
| 60759 | 318 | lemma eqTrueE: "P = True \<Longrightarrow> P" | 
| 21504 | 319 | by (erule iffD2) (rule TrueI) | 
| 15411 | 320 | |
| 321 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 322 | subsubsection \<open>Universal quantifier (1)\<close> | 
| 15411 | 323 | |
| 60759 | 324 | lemma spec: "\<forall>x::'a. P x \<Longrightarrow> P x" | 
| 63575 | 325 | apply (unfold All_def) | 
| 326 | apply (rule eqTrueE) | |
| 327 | apply (erule fun_cong) | |
| 328 | done | |
| 15411 | 329 | |
| 330 | lemma allE: | |
| 60759 | 331 | assumes major: "\<forall>x. P x" | 
| 332 | and minor: "P x \<Longrightarrow> R" | |
| 21504 | 333 | shows R | 
| 334 | by (iprover intro: minor major [THEN spec]) | |
| 15411 | 335 | |
| 336 | lemma all_dupE: | |
| 60759 | 337 | assumes major: "\<forall>x. P x" | 
| 338 | and minor: "\<lbrakk>P x; \<forall>x. P x\<rbrakk> \<Longrightarrow> R" | |
| 21504 | 339 | shows R | 
| 340 | by (iprover intro: minor major major [THEN spec]) | |
| 15411 | 341 | |
| 342 | ||
| 60758 | 343 | subsubsection \<open>False\<close> | 
| 21504 | 344 | |
| 60758 | 345 | text \<open> | 
| 61799 | 346 | Depends upon \<open>spec\<close>; it is impossible to do propositional | 
| 21504 | 347 | logic before quantifiers! | 
| 60758 | 348 | \<close> | 
| 15411 | 349 | |
| 60759 | 350 | lemma FalseE: "False \<Longrightarrow> P" | 
| 21504 | 351 | apply (unfold False_def) | 
| 352 | apply (erule spec) | |
| 353 | done | |
| 15411 | 354 | |
| 60759 | 355 | lemma False_neq_True: "False = True \<Longrightarrow> P" | 
| 21504 | 356 | by (erule eqTrueE [THEN FalseE]) | 
| 15411 | 357 | |
| 358 | ||
| 60758 | 359 | subsubsection \<open>Negation\<close> | 
| 15411 | 360 | |
| 361 | lemma notI: | |
| 60759 | 362 | assumes "P \<Longrightarrow> False" | 
| 363 | shows "\<not> P" | |
| 21504 | 364 | apply (unfold not_def) | 
| 365 | apply (iprover intro: impI assms) | |
| 366 | done | |
| 15411 | 367 | |
| 60759 | 368 | lemma False_not_True: "False \<noteq> True" | 
| 21504 | 369 | apply (rule notI) | 
| 370 | apply (erule False_neq_True) | |
| 371 | done | |
| 15411 | 372 | |
| 60759 | 373 | lemma True_not_False: "True \<noteq> False" | 
| 21504 | 374 | apply (rule notI) | 
| 375 | apply (drule sym) | |
| 376 | apply (erule False_neq_True) | |
| 377 | done | |
| 15411 | 378 | |
| 60759 | 379 | lemma notE: "\<lbrakk>\<not> P; P\<rbrakk> \<Longrightarrow> R" | 
| 21504 | 380 | apply (unfold not_def) | 
| 381 | apply (erule mp [THEN FalseE]) | |
| 382 | apply assumption | |
| 383 | done | |
| 15411 | 384 | |
| 21504 | 385 | lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P" | 
| 386 | by (erule notE [THEN notI]) (erule meta_mp) | |
| 15411 | 387 | |
| 388 | ||
| 60758 | 389 | subsubsection \<open>Implication\<close> | 
| 15411 | 390 | |
| 391 | lemma impE: | |
| 60759 | 392 | assumes "P \<longrightarrow> Q" P "Q \<Longrightarrow> R" | 
| 393 | shows R | |
| 63575 | 394 | by (iprover intro: assms mp) | 
| 15411 | 395 | |
| 63575 | 396 | text \<open>Reduces \<open>Q\<close> to \<open>P \<longrightarrow> Q\<close>, allowing substitution in \<open>P\<close>.\<close> | 
| 60759 | 397 | lemma rev_mp: "\<lbrakk>P; P \<longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 63575 | 398 | by (iprover intro: mp) | 
| 15411 | 399 | |
| 400 | lemma contrapos_nn: | |
| 60759 | 401 | assumes major: "\<not> Q" | 
| 63575 | 402 | and minor: "P \<Longrightarrow> Q" | 
| 60759 | 403 | shows "\<not> P" | 
| 63575 | 404 | by (iprover intro: notI minor major [THEN notE]) | 
| 15411 | 405 | |
| 63575 | 406 | text \<open>Not used at all, but we already have the other 3 combinations.\<close> | 
| 15411 | 407 | lemma contrapos_pn: | 
| 408 | assumes major: "Q" | |
| 63575 | 409 | and minor: "P \<Longrightarrow> \<not> Q" | 
| 60759 | 410 | shows "\<not> P" | 
| 63575 | 411 | by (iprover intro: notI minor major notE) | 
| 15411 | 412 | |
| 60759 | 413 | lemma not_sym: "t \<noteq> s \<Longrightarrow> s \<noteq> t" | 
| 21250 | 414 | by (erule contrapos_nn) (erule sym) | 
| 415 | ||
| 60759 | 416 | lemma eq_neq_eq_imp_neq: "\<lbrakk>x = a; a \<noteq> b; b = y\<rbrakk> \<Longrightarrow> x \<noteq> y" | 
| 21250 | 417 | by (erule subst, erule ssubst, assumption) | 
| 15411 | 418 | |
| 419 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 420 | subsubsection \<open>Disjunction (1)\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 421 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 422 | lemma disjE: | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 423 | assumes major: "P \<or> Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 424 | and minorP: "P \<Longrightarrow> R" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 425 | and minorQ: "Q \<Longrightarrow> R" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 426 | shows R | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 427 | by (iprover intro: minorP minorQ impI | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 428 | major [unfolded or_def, THEN spec, THEN mp, THEN mp]) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 429 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 430 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 431 | subsubsection \<open>Derivation of \<open>iffI\<close>\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 432 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 433 | text \<open>In an intuitionistic version of HOL \<open>iffI\<close> needs to be an axiom.\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 434 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 435 | lemma iffI: | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 436 | assumes "P \<Longrightarrow> Q" and "Q \<Longrightarrow> P" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 437 | shows "P = Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 438 | proof (rule disjE[OF True_or_False[of P]]) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 439 | assume 1: "P = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 440 | note Q = assms(1)[OF eqTrueE[OF this]] | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 441 | from 1 show ?thesis | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 442 | proof (rule ssubst) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 443 | from True_or_False[of Q] show "True = Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 444 | proof (rule disjE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 445 | assume "Q = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 446 | thus ?thesis by(rule sym) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 447 | next | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 448 | assume "Q = False" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 449 | with Q have False by (rule rev_iffD1) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 450 | thus ?thesis by (rule FalseE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 451 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 452 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 453 | next | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 454 | assume 2: "P = False" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 455 | thus ?thesis | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 456 | proof (rule ssubst) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 457 | from True_or_False[of Q] show "False = Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 458 | proof (rule disjE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 459 | assume "Q = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 460 | from 2 assms(2)[OF eqTrueE[OF this]] have False by (rule iffD1) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 461 | thus ?thesis by (rule FalseE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 462 | next | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 463 | assume "Q = False" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 464 | thus ?thesis by(rule sym) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 465 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 466 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 467 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 468 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 469 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 470 | subsubsection \<open>True (2)\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 471 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 472 | lemma eqTrueI: "P \<Longrightarrow> P = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 473 | by (iprover intro: iffI TrueI) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 474 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 475 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 476 | subsubsection \<open>Universal quantifier (2)\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 477 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 478 | lemma allI: | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 479 | assumes "\<And>x::'a. P x" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 480 | shows "\<forall>x. P x" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 481 | unfolding All_def by (iprover intro: ext eqTrueI assms) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 482 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 483 | |
| 60758 | 484 | subsubsection \<open>Existential quantifier\<close> | 
| 15411 | 485 | |
| 60759 | 486 | lemma exI: "P x \<Longrightarrow> \<exists>x::'a. P x" | 
| 63575 | 487 | unfolding Ex_def by (iprover intro: allI allE impI mp) | 
| 15411 | 488 | |
| 489 | lemma exE: | |
| 60759 | 490 | assumes major: "\<exists>x::'a. P x" | 
| 63575 | 491 | and minor: "\<And>x. P x \<Longrightarrow> Q" | 
| 15411 | 492 | shows "Q" | 
| 63575 | 493 | by (rule major [unfolded Ex_def, THEN spec, THEN mp]) (iprover intro: impI [THEN allI] minor) | 
| 15411 | 494 | |
| 495 | ||
| 60758 | 496 | subsubsection \<open>Conjunction\<close> | 
| 15411 | 497 | |
| 60759 | 498 | lemma conjI: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> P \<and> Q" | 
| 63575 | 499 | unfolding and_def by (iprover intro: impI [THEN allI] mp) | 
| 15411 | 500 | |
| 60759 | 501 | lemma conjunct1: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> P" | 
| 63575 | 502 | unfolding and_def by (iprover intro: impI dest: spec mp) | 
| 15411 | 503 | |
| 60759 | 504 | lemma conjunct2: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> Q" | 
| 63575 | 505 | unfolding and_def by (iprover intro: impI dest: spec mp) | 
| 15411 | 506 | |
| 507 | lemma conjE: | |
| 60759 | 508 | assumes major: "P \<and> Q" | 
| 63575 | 509 | and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" | 
| 60759 | 510 | shows R | 
| 63575 | 511 | apply (rule minor) | 
| 512 | apply (rule major [THEN conjunct1]) | |
| 513 | apply (rule major [THEN conjunct2]) | |
| 514 | done | |
| 15411 | 515 | |
| 516 | lemma context_conjI: | |
| 63575 | 517 | assumes P "P \<Longrightarrow> Q" | 
| 518 | shows "P \<and> Q" | |
| 519 | by (iprover intro: conjI assms) | |
| 15411 | 520 | |
| 521 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 522 | subsubsection \<open>Disjunction (2)\<close> | 
| 15411 | 523 | |
| 60759 | 524 | lemma disjI1: "P \<Longrightarrow> P \<or> Q" | 
| 63575 | 525 | unfolding or_def by (iprover intro: allI impI mp) | 
| 15411 | 526 | |
| 60759 | 527 | lemma disjI2: "Q \<Longrightarrow> P \<or> Q" | 
| 63575 | 528 | unfolding or_def by (iprover intro: allI impI mp) | 
| 15411 | 529 | |
| 530 | ||
| 60758 | 531 | subsubsection \<open>Classical logic\<close> | 
| 15411 | 532 | |
| 533 | lemma classical: | |
| 60759 | 534 | assumes prem: "\<not> P \<Longrightarrow> P" | 
| 535 | shows P | |
| 63575 | 536 | apply (rule True_or_False [THEN disjE, THEN eqTrueE]) | 
| 537 | apply assumption | |
| 538 | apply (rule notI [THEN prem, THEN eqTrueI]) | |
| 539 | apply (erule subst) | |
| 540 | apply assumption | |
| 541 | done | |
| 15411 | 542 | |
| 45607 | 543 | lemmas ccontr = FalseE [THEN classical] | 
| 15411 | 544 | |
| 63575 | 545 | text \<open>\<open>notE\<close> with premises exchanged; it discharges \<open>\<not> R\<close> so that it can be used to | 
| 546 | make elimination rules.\<close> | |
| 15411 | 547 | lemma rev_notE: | 
| 60759 | 548 | assumes premp: P | 
| 63575 | 549 | and premnot: "\<not> R \<Longrightarrow> \<not> P" | 
| 60759 | 550 | shows R | 
| 63575 | 551 | apply (rule ccontr) | 
| 552 | apply (erule notE [OF premnot premp]) | |
| 553 | done | |
| 15411 | 554 | |
| 63575 | 555 | text \<open>Double negation law.\<close> | 
| 60759 | 556 | lemma notnotD: "\<not>\<not> P \<Longrightarrow> P" | 
| 63575 | 557 | apply (rule classical) | 
| 558 | apply (erule notE) | |
| 559 | apply assumption | |
| 560 | done | |
| 15411 | 561 | |
| 562 | lemma contrapos_pp: | |
| 60759 | 563 | assumes p1: Q | 
| 63575 | 564 | and p2: "\<not> P \<Longrightarrow> \<not> Q" | 
| 60759 | 565 | shows P | 
| 63575 | 566 | by (iprover intro: classical p1 p2 notE) | 
| 15411 | 567 | |
| 568 | ||
| 60758 | 569 | subsubsection \<open>Unique existence\<close> | 
| 15411 | 570 | |
| 571 | lemma ex1I: | |
| 60759 | 572 | assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" | 
| 573 | shows "\<exists>!x. P x" | |
| 63575 | 574 | unfolding Ex1_def by (iprover intro: assms exI conjI allI impI) | 
| 15411 | 575 | |
| 63575 | 576 | text \<open>Sometimes easier to use: the premises have no shared variables. Safe!\<close> | 
| 15411 | 577 | lemma ex_ex1I: | 
| 60759 | 578 | assumes ex_prem: "\<exists>x. P x" | 
| 63575 | 579 | and eq: "\<And>x y. \<lbrakk>P x; P y\<rbrakk> \<Longrightarrow> x = y" | 
| 60759 | 580 | shows "\<exists>!x. P x" | 
| 63575 | 581 | by (iprover intro: ex_prem [THEN exE] ex1I eq) | 
| 15411 | 582 | |
| 583 | lemma ex1E: | |
| 60759 | 584 | assumes major: "\<exists>!x. P x" | 
| 63575 | 585 | and minor: "\<And>x. \<lbrakk>P x; \<forall>y. P y \<longrightarrow> y = x\<rbrakk> \<Longrightarrow> R" | 
| 60759 | 586 | shows R | 
| 63575 | 587 | apply (rule major [unfolded Ex1_def, THEN exE]) | 
| 588 | apply (erule conjE) | |
| 589 | apply (iprover intro: minor) | |
| 590 | done | |
| 15411 | 591 | |
| 60759 | 592 | lemma ex1_implies_ex: "\<exists>!x. P x \<Longrightarrow> \<exists>x. P x" | 
| 63575 | 593 | apply (erule ex1E) | 
| 594 | apply (rule exI) | |
| 595 | apply assumption | |
| 596 | done | |
| 15411 | 597 | |
| 598 | ||
| 60758 | 599 | subsubsection \<open>Classical intro rules for disjunction and existential quantifiers\<close> | 
| 15411 | 600 | |
| 601 | lemma disjCI: | |
| 63575 | 602 | assumes "\<not> Q \<Longrightarrow> P" | 
| 603 | shows "P \<or> Q" | |
| 604 | by (rule classical) (iprover intro: assms disjI1 disjI2 notI elim: notE) | |
| 15411 | 605 | |
| 60759 | 606 | lemma excluded_middle: "\<not> P \<or> P" | 
| 63575 | 607 | by (iprover intro: disjCI) | 
| 15411 | 608 | |
| 60758 | 609 | text \<open> | 
| 20944 | 610 | case distinction as a natural deduction rule. | 
| 63575 | 611 | Note that \<open>\<not> P\<close> is the second case, not the first. | 
| 60758 | 612 | \<close> | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 613 | lemma case_split [case_names True False]: | 
| 60759 | 614 | assumes prem1: "P \<Longrightarrow> Q" | 
| 63575 | 615 | and prem2: "\<not> P \<Longrightarrow> Q" | 
| 60759 | 616 | shows Q | 
| 63575 | 617 | apply (rule excluded_middle [THEN disjE]) | 
| 618 | apply (erule prem2) | |
| 619 | apply (erule prem1) | |
| 620 | done | |
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 621 | |
| 63575 | 622 | text \<open>Classical implies (\<open>\<longrightarrow>\<close>) elimination.\<close> | 
| 15411 | 623 | lemma impCE: | 
| 60759 | 624 | assumes major: "P \<longrightarrow> Q" | 
| 63575 | 625 | and minor: "\<not> P \<Longrightarrow> R" "Q \<Longrightarrow> R" | 
| 60759 | 626 | shows R | 
| 63575 | 627 | apply (rule excluded_middle [of P, THEN disjE]) | 
| 628 | apply (iprover intro: minor major [THEN mp])+ | |
| 629 | done | |
| 15411 | 630 | |
| 63575 | 631 | text \<open> | 
| 632 | This version of \<open>\<longrightarrow>\<close> elimination works on \<open>Q\<close> before \<open>P\<close>. It works best for | |
| 633 | those cases in which \<open>P\<close> holds "almost everywhere". Can't install as | |
| 634 | default: would break old proofs. | |
| 635 | \<close> | |
| 15411 | 636 | lemma impCE': | 
| 60759 | 637 | assumes major: "P \<longrightarrow> Q" | 
| 63575 | 638 | and minor: "Q \<Longrightarrow> R" "\<not> P \<Longrightarrow> R" | 
| 60759 | 639 | shows R | 
| 63575 | 640 | apply (rule excluded_middle [of P, THEN disjE]) | 
| 641 | apply (iprover intro: minor major [THEN mp])+ | |
| 642 | done | |
| 15411 | 643 | |
| 63575 | 644 | text \<open>Classical \<open>\<longleftrightarrow>\<close> elimination.\<close> | 
| 15411 | 645 | lemma iffCE: | 
| 60759 | 646 | assumes major: "P = Q" | 
| 63575 | 647 | and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> R" | 
| 60759 | 648 | shows R | 
| 63575 | 649 | by (rule major [THEN iffE]) (iprover intro: minor elim: impCE notE) | 
| 15411 | 650 | |
| 651 | lemma exCI: | |
| 60759 | 652 | assumes "\<forall>x. \<not> P x \<Longrightarrow> P a" | 
| 653 | shows "\<exists>x. P x" | |
| 63575 | 654 | by (rule ccontr) (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) | 
| 15411 | 655 | |
| 656 | ||
| 60758 | 657 | subsubsection \<open>Intuitionistic Reasoning\<close> | 
| 12386 | 658 | |
| 659 | lemma impE': | |
| 60759 | 660 | assumes 1: "P \<longrightarrow> Q" | 
| 661 | and 2: "Q \<Longrightarrow> R" | |
| 662 | and 3: "P \<longrightarrow> Q \<Longrightarrow> P" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 663 | shows R | 
| 12386 | 664 | proof - | 
| 665 | from 3 and 1 have P . | |
| 666 | with 1 have Q by (rule impE) | |
| 667 | with 2 show R . | |
| 668 | qed | |
| 669 | ||
| 670 | lemma allE': | |
| 60759 | 671 | assumes 1: "\<forall>x. P x" | 
| 672 | and 2: "P x \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 673 | shows Q | 
| 12386 | 674 | proof - | 
| 675 | from 1 have "P x" by (rule spec) | |
| 676 | from this and 1 show Q by (rule 2) | |
| 677 | qed | |
| 678 | ||
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 679 | lemma notE': | 
| 60759 | 680 | assumes 1: "\<not> P" | 
| 681 | and 2: "\<not> P \<Longrightarrow> P" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 682 | shows R | 
| 12386 | 683 | proof - | 
| 684 | from 2 and 1 have P . | |
| 685 | with 1 show R by (rule notE) | |
| 686 | qed | |
| 687 | ||
| 60759 | 688 | lemma TrueE: "True \<Longrightarrow> P \<Longrightarrow> P" . | 
| 689 | lemma notFalseE: "\<not> False \<Longrightarrow> P \<Longrightarrow> P" . | |
| 22444 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 690 | |
| 22467 
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
 dixon parents: 
22445diff
changeset | 691 | lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE | 
| 15801 | 692 | and [Pure.intro!] = iffI conjI impI TrueI notI allI refl | 
| 693 | and [Pure.elim 2] = allE notE' impE' | |
| 694 | and [Pure.intro] = exI disjI2 disjI1 | |
| 12386 | 695 | |
| 696 | lemmas [trans] = trans | |
| 697 | and [sym] = sym not_sym | |
| 15801 | 698 | and [Pure.elim?] = iffD1 iffD2 impE | 
| 11750 | 699 | |
| 11438 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 wenzelm parents: 
11432diff
changeset | 700 | |
| 60758 | 701 | subsubsection \<open>Atomizing meta-level connectives\<close> | 
| 11750 | 702 | |
| 28513 | 703 | axiomatization where | 
| 63575 | 704 | eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" \<comment> \<open>admissible axiom\<close> | 
| 28513 | 705 | |
| 60759 | 706 | lemma atomize_all [atomize]: "(\<And>x. P x) \<equiv> Trueprop (\<forall>x. P x)" | 
| 12003 | 707 | proof | 
| 60759 | 708 | assume "\<And>x. P x" | 
| 709 | then show "\<forall>x. P x" .. | |
| 9488 | 710 | next | 
| 60759 | 711 | assume "\<forall>x. P x" | 
| 712 | then show "\<And>x. P x" by (rule allE) | |
| 9488 | 713 | qed | 
| 714 | ||
| 60759 | 715 | lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)" | 
| 12003 | 716 | proof | 
| 60759 | 717 | assume r: "A \<Longrightarrow> B" | 
| 718 | show "A \<longrightarrow> B" by (rule impI) (rule r) | |
| 9488 | 719 | next | 
| 60759 | 720 | assume "A \<longrightarrow> B" and A | 
| 23553 | 721 | then show B by (rule mp) | 
| 9488 | 722 | qed | 
| 723 | ||
| 60759 | 724 | lemma atomize_not: "(A \<Longrightarrow> False) \<equiv> Trueprop (\<not> A)" | 
| 14749 | 725 | proof | 
| 60759 | 726 | assume r: "A \<Longrightarrow> False" | 
| 727 | show "\<not> A" by (rule notI) (rule r) | |
| 14749 | 728 | next | 
| 60759 | 729 | assume "\<not> A" and A | 
| 23553 | 730 | then show False by (rule notE) | 
| 14749 | 731 | qed | 
| 732 | ||
| 60759 | 733 | lemma atomize_eq [atomize, code]: "(x \<equiv> y) \<equiv> Trueprop (x = y)" | 
| 12003 | 734 | proof | 
| 60759 | 735 | assume "x \<equiv> y" | 
| 736 | show "x = y" by (unfold \<open>x \<equiv> y\<close>) (rule refl) | |
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 737 | next | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 738 | assume "x = y" | 
| 60759 | 739 | then show "x \<equiv> y" by (rule eq_reflection) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 740 | qed | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 741 | |
| 60759 | 742 | lemma atomize_conj [atomize]: "(A &&& B) \<equiv> Trueprop (A \<and> B)" | 
| 12003 | 743 | proof | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 744 | assume conj: "A &&& B" | 
| 60759 | 745 | show "A \<and> B" | 
| 19121 | 746 | proof (rule conjI) | 
| 747 | from conj show A by (rule conjunctionD1) | |
| 748 | from conj show B by (rule conjunctionD2) | |
| 749 | qed | |
| 11953 | 750 | next | 
| 60759 | 751 | assume conj: "A \<and> B" | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 752 | show "A &&& B" | 
| 19121 | 753 | proof - | 
| 754 | from conj show A .. | |
| 755 | from conj show B .. | |
| 11953 | 756 | qed | 
| 757 | qed | |
| 758 | ||
| 12386 | 759 | lemmas [symmetric, rulify] = atomize_all atomize_imp | 
| 18832 | 760 | and [symmetric, defn] = atomize_all atomize_imp atomize_eq | 
| 12386 | 761 | |
| 11750 | 762 | |
| 60758 | 763 | subsubsection \<open>Atomizing elimination rules\<close> | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 764 | |
| 60759 | 765 | lemma atomize_exL[atomize_elim]: "(\<And>x. P x \<Longrightarrow> Q) \<equiv> ((\<exists>x. P x) \<Longrightarrow> Q)" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 766 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 767 | |
| 60759 | 768 | lemma atomize_conjL[atomize_elim]: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (A \<and> B \<Longrightarrow> C)" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 769 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 770 | |
| 60759 | 771 | lemma atomize_disjL[atomize_elim]: "((A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C) \<equiv> ((A \<or> B \<Longrightarrow> C) \<Longrightarrow> C)" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 772 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 773 | |
| 60759 | 774 | lemma atomize_elimL[atomize_elim]: "(\<And>B. (A \<Longrightarrow> B) \<Longrightarrow> B) \<equiv> Trueprop A" .. | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 775 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 776 | |
| 60758 | 777 | subsection \<open>Package setup\<close> | 
| 20944 | 778 | |
| 51314 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 wenzelm parents: 
51304diff
changeset | 779 | ML_file "Tools/hologic.ML" | 
| 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 wenzelm parents: 
51304diff
changeset | 780 | |
| 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 wenzelm parents: 
51304diff
changeset | 781 | |
| 60758 | 782 | subsubsection \<open>Sledgehammer setup\<close> | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 783 | |
| 60758 | 784 | text \<open> | 
| 63575 | 785 | Theorems blacklisted to Sledgehammer. These theorems typically produce clauses | 
| 786 | that are prolific (match too many equality or membership literals) and relate to | |
| 787 | seldom-used facts. Some duplicate other rules. | |
| 60758 | 788 | \<close> | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 789 | |
| 57963 | 790 | named_theorems no_atp "theorems that should be filtered out by Sledgehammer" | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 791 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 792 | |
| 60758 | 793 | subsubsection \<open>Classical Reasoner setup\<close> | 
| 9529 | 794 | |
| 60759 | 795 | lemma imp_elim: "P \<longrightarrow> Q \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | 
| 26411 | 796 | by (rule classical) iprover | 
| 797 | ||
| 60759 | 798 | lemma swap: "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R" | 
| 26411 | 799 | by (rule classical) iprover | 
| 800 | ||
| 62958 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 wenzelm parents: 
62913diff
changeset | 801 | lemma thin_refl: "\<lbrakk>x = x; PROP W\<rbrakk> \<Longrightarrow> PROP W" . | 
| 20944 | 802 | |
| 60758 | 803 | ML \<open> | 
| 42799 | 804 | structure Hypsubst = Hypsubst | 
| 805 | ( | |
| 21218 | 806 | val dest_eq = HOLogic.dest_eq | 
| 21151 | 807 | val dest_Trueprop = HOLogic.dest_Trueprop | 
| 808 | val dest_imp = HOLogic.dest_imp | |
| 26411 | 809 |   val eq_reflection = @{thm eq_reflection}
 | 
| 810 |   val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
 | |
| 811 |   val imp_intr = @{thm impI}
 | |
| 812 |   val rev_mp = @{thm rev_mp}
 | |
| 813 |   val subst = @{thm subst}
 | |
| 814 |   val sym = @{thm sym}
 | |
| 22129 | 815 |   val thin_refl = @{thm thin_refl};
 | 
| 42799 | 816 | ); | 
| 21671 | 817 | open Hypsubst; | 
| 21151 | 818 | |
| 42799 | 819 | structure Classical = Classical | 
| 820 | ( | |
| 26411 | 821 |   val imp_elim = @{thm imp_elim}
 | 
| 822 |   val not_elim = @{thm notE}
 | |
| 823 |   val swap = @{thm swap}
 | |
| 824 |   val classical = @{thm classical}
 | |
| 21151 | 825 | val sizef = Drule.size_of_thm | 
| 826 | val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] | |
| 42799 | 827 | ); | 
| 21151 | 828 | |
| 58826 | 829 | structure Basic_Classical: BASIC_CLASSICAL = Classical; | 
| 33308 
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
 wenzelm parents: 
33185diff
changeset | 830 | open Basic_Classical; | 
| 60758 | 831 | \<close> | 
| 22129 | 832 | |
| 60758 | 833 | setup \<open> | 
| 35389 | 834 | (*prevent substitution on bool*) | 
| 58826 | 835 | let | 
| 836 |     fun non_bool_eq (@{const_name HOL.eq}, Type (_, [T, _])) = T <> @{typ bool}
 | |
| 837 | | non_bool_eq _ = false; | |
| 838 | fun hyp_subst_tac' ctxt = | |
| 839 | SUBGOAL (fn (goal, i) => | |
| 840 | if Term.exists_Const non_bool_eq goal | |
| 841 | then Hypsubst.hyp_subst_tac ctxt i | |
| 842 | else no_tac); | |
| 843 | in | |
| 844 | Context_Rules.addSWrapper (fn ctxt => fn tac => hyp_subst_tac' ctxt ORELSE' tac) | |
| 845 | end | |
| 60758 | 846 | \<close> | 
| 21009 | 847 | |
| 848 | declare iffI [intro!] | |
| 849 | and notI [intro!] | |
| 850 | and impI [intro!] | |
| 851 | and disjCI [intro!] | |
| 852 | and conjI [intro!] | |
| 853 | and TrueI [intro!] | |
| 854 | and refl [intro!] | |
| 855 | ||
| 856 | declare iffCE [elim!] | |
| 857 | and FalseE [elim!] | |
| 858 | and impCE [elim!] | |
| 859 | and disjE [elim!] | |
| 860 | and conjE [elim!] | |
| 861 | ||
| 862 | declare ex_ex1I [intro!] | |
| 863 | and allI [intro!] | |
| 864 | and exI [intro] | |
| 865 | ||
| 866 | declare exE [elim!] | |
| 867 | allE [elim] | |
| 868 | ||
| 60758 | 869 | ML \<open>val HOL_cs = claset_of @{context}\<close>
 | 
| 19162 | 870 | |
| 60759 | 871 | lemma contrapos_np: "\<not> Q \<Longrightarrow> (\<not> P \<Longrightarrow> Q) \<Longrightarrow> P" | 
| 20223 | 872 | apply (erule swap) | 
| 873 | apply (erule (1) meta_mp) | |
| 874 | done | |
| 10383 | 875 | |
| 18689 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 876 | declare ex_ex1I [rule del, intro! 2] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 877 | and ex1I [intro] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 878 | |
| 41865 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 paulson parents: 
41827diff
changeset | 879 | declare ext [intro] | 
| 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 paulson parents: 
41827diff
changeset | 880 | |
| 12386 | 881 | lemmas [intro?] = ext | 
| 882 | and [elim?] = ex1_implies_ex | |
| 11977 | 883 | |
| 63575 | 884 | text \<open>Better than \<open>ex1E\<close> for classical reasoner: needs no quantifier duplication!\<close> | 
| 20973 | 885 | lemma alt_ex1E [elim!]: | 
| 20944 | 886 | assumes major: "\<exists>!x. P x" | 
| 63575 | 887 | and prem: "\<And>x. \<lbrakk>P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y'\<rbrakk> \<Longrightarrow> R" | 
| 20944 | 888 | shows R | 
| 63575 | 889 | apply (rule ex1E [OF major]) | 
| 890 | apply (rule prem) | |
| 891 | apply assumption | |
| 892 | apply (rule allI)+ | |
| 893 |   apply (tactic \<open>eresolve_tac @{context} [Classical.dup_elim @{context} @{thm allE}] 1\<close>)
 | |
| 894 | apply iprover | |
| 895 | done | |
| 20944 | 896 | |
| 60758 | 897 | ML \<open> | 
| 42477 | 898 | structure Blast = Blast | 
| 899 | ( | |
| 900 | structure Classical = Classical | |
| 42802 | 901 |     val Trueprop_const = dest_Const @{const Trueprop}
 | 
| 42477 | 902 |     val equality_name = @{const_name HOL.eq}
 | 
| 903 |     val not_name = @{const_name Not}
 | |
| 904 |     val notE = @{thm notE}
 | |
| 905 |     val ccontr = @{thm ccontr}
 | |
| 906 | val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac | |
| 907 | ); | |
| 908 | val blast_tac = Blast.blast_tac; | |
| 60758 | 909 | \<close> | 
| 20944 | 910 | |
| 911 | ||
| 60758 | 912 | subsubsection \<open>THE: definite description operator\<close> | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 913 | |
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 914 | lemma the_equality [intro]: | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 915 | assumes "P a" | 
| 63575 | 916 | and "\<And>x. P x \<Longrightarrow> x = a" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 917 | shows "(THE x. P x) = a" | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 918 | by (blast intro: assms trans [OF arg_cong [where f=The] the_eq_trivial]) | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 919 | |
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 920 | lemma theI: | 
| 63575 | 921 | assumes "P a" | 
| 922 | and "\<And>x. P x \<Longrightarrow> x = a" | |
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 923 | shows "P (THE x. P x)" | 
| 63575 | 924 | by (iprover intro: assms the_equality [THEN ssubst]) | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 925 | |
| 60759 | 926 | lemma theI': "\<exists>!x. P x \<Longrightarrow> P (THE x. P x)" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 927 | by (blast intro: theI) | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 928 | |
| 63575 | 929 | text \<open>Easier to apply than \<open>theI\<close>: only one occurrence of \<open>P\<close>.\<close> | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 930 | lemma theI2: | 
| 60759 | 931 | assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" "\<And>x. P x \<Longrightarrow> Q x" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 932 | shows "Q (THE x. P x)" | 
| 63575 | 933 | by (iprover intro: assms theI) | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 934 | |
| 63575 | 935 | lemma the1I2: | 
| 936 | assumes "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x" | |
| 937 | shows "Q (THE x. P x)" | |
| 938 | by (iprover intro: assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] elim: allE impE) | |
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 939 | |
| 60759 | 940 | lemma the1_equality [elim?]: "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> (THE x. P x) = a" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 941 | by blast | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 942 | |
| 60759 | 943 | lemma the_sym_eq_trivial: "(THE y. x = y) = x" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 944 | by blast | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 945 | |
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 946 | |
| 60758 | 947 | subsubsection \<open>Simplifier\<close> | 
| 12281 | 948 | |
| 60759 | 949 | lemma eta_contract_eq: "(\<lambda>s. f s) = f" .. | 
| 12281 | 950 | |
| 951 | lemma simp_thms: | |
| 60759 | 952 | shows not_not: "(\<not> \<not> P) = P" | 
| 953 | and Not_eq_iff: "((\<not> P) = (\<not> Q)) = (P = Q)" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 954 | and | 
| 60759 | 955 | "(P \<noteq> Q) = (P = (\<not> Q))" | 
| 956 | "(P \<or> \<not>P) = True" "(\<not> P \<or> P) = True" | |
| 12281 | 957 | "(x = x) = True" | 
| 32068 | 958 | and not_True_eq_False [code]: "(\<not> True) = False" | 
| 959 | and not_False_eq_True [code]: "(\<not> False) = True" | |
| 20944 | 960 | and | 
| 60759 | 961 | "(\<not> P) \<noteq> P" "P \<noteq> (\<not> P)" | 
| 962 | "(True = P) = P" | |
| 20944 | 963 | and eq_True: "(P = True) = P" | 
| 60759 | 964 | and "(False = P) = (\<not> P)" | 
| 20944 | 965 | and eq_False: "(P = False) = (\<not> P)" | 
| 966 | and | |
| 60759 | 967 | "(True \<longrightarrow> P) = P" "(False \<longrightarrow> P) = True" | 
| 968 | "(P \<longrightarrow> True) = True" "(P \<longrightarrow> P) = True" | |
| 969 | "(P \<longrightarrow> False) = (\<not> P)" "(P \<longrightarrow> \<not> P) = (\<not> P)" | |
| 970 | "(P \<and> True) = P" "(True \<and> P) = P" | |
| 971 | "(P \<and> False) = False" "(False \<and> P) = False" | |
| 972 | "(P \<and> P) = P" "(P \<and> (P \<and> Q)) = (P \<and> Q)" | |
| 973 | "(P \<and> \<not> P) = False" "(\<not> P \<and> P) = False" | |
| 974 | "(P \<or> True) = True" "(True \<or> P) = True" | |
| 975 | "(P \<or> False) = P" "(False \<or> P) = P" | |
| 976 | "(P \<or> P) = P" "(P \<or> (P \<or> Q)) = (P \<or> Q)" and | |
| 977 | "(\<forall>x. P) = P" "(\<exists>x. P) = P" "\<exists>x. x = t" "\<exists>x. t = x" | |
| 31166 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 nipkow parents: 
31156diff
changeset | 978 | and | 
| 60759 | 979 | "\<And>P. (\<exists>x. x = t \<and> P x) = P t" | 
| 980 | "\<And>P. (\<exists>x. t = x \<and> P x) = P t" | |
| 981 | "\<And>P. (\<forall>x. x = t \<longrightarrow> P x) = P t" | |
| 982 | "\<And>P. (\<forall>x. t = x \<longrightarrow> P x) = P t" | |
| 66109 | 983 | "(\<forall>x. x \<noteq> t) = False" "(\<forall>x. t \<noteq> x) = False" | 
| 17589 | 984 | by (blast, blast, blast, blast, blast, iprover+) | 
| 13421 | 985 | |
| 63575 | 986 | lemma disj_absorb: "A \<or> A \<longleftrightarrow> A" | 
| 14201 | 987 | by blast | 
| 988 | ||
| 63575 | 989 | lemma disj_left_absorb: "A \<or> (A \<or> B) \<longleftrightarrow> A \<or> B" | 
| 14201 | 990 | by blast | 
| 991 | ||
| 63575 | 992 | lemma conj_absorb: "A \<and> A \<longleftrightarrow> A" | 
| 14201 | 993 | by blast | 
| 994 | ||
| 63575 | 995 | lemma conj_left_absorb: "A \<and> (A \<and> B) \<longleftrightarrow> A \<and> B" | 
| 14201 | 996 | by blast | 
| 997 | ||
| 12281 | 998 | lemma eq_ac: | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56941diff
changeset | 999 | shows eq_commute: "a = b \<longleftrightarrow> b = a" | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56941diff
changeset | 1000 | and iff_left_commute: "(P \<longleftrightarrow> (Q \<longleftrightarrow> R)) \<longleftrightarrow> (Q \<longleftrightarrow> (P \<longleftrightarrow> R))" | 
| 63575 | 1001 | and iff_assoc: "((P \<longleftrightarrow> Q) \<longleftrightarrow> R) \<longleftrightarrow> (P \<longleftrightarrow> (Q \<longleftrightarrow> R))" | 
| 1002 | by (iprover, blast+) | |
| 1003 | ||
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56941diff
changeset | 1004 | lemma neq_commute: "a \<noteq> b \<longleftrightarrow> b \<noteq> a" by iprover | 
| 12281 | 1005 | |
| 1006 | lemma conj_comms: | |
| 63575 | 1007 | shows conj_commute: "P \<and> Q \<longleftrightarrow> Q \<and> P" | 
| 1008 | and conj_left_commute: "P \<and> (Q \<and> R) \<longleftrightarrow> Q \<and> (P \<and> R)" by iprover+ | |
| 1009 | lemma conj_assoc: "(P \<and> Q) \<and> R \<longleftrightarrow> P \<and> (Q \<and> R)" by iprover | |
| 12281 | 1010 | |
| 19174 | 1011 | lemmas conj_ac = conj_commute conj_left_commute conj_assoc | 
| 1012 | ||
| 12281 | 1013 | lemma disj_comms: | 
| 63575 | 1014 | shows disj_commute: "P \<or> Q \<longleftrightarrow> Q \<or> P" | 
| 1015 | and disj_left_commute: "P \<or> (Q \<or> R) \<longleftrightarrow> Q \<or> (P \<or> R)" by iprover+ | |
| 1016 | lemma disj_assoc: "(P \<or> Q) \<or> R \<longleftrightarrow> P \<or> (Q \<or> R)" by iprover | |
| 12281 | 1017 | |
| 19174 | 1018 | lemmas disj_ac = disj_commute disj_left_commute disj_assoc | 
| 1019 | ||
| 63575 | 1020 | lemma conj_disj_distribL: "P \<and> (Q \<or> R) \<longleftrightarrow> P \<and> Q \<or> P \<and> R" by iprover | 
| 1021 | lemma conj_disj_distribR: "(P \<or> Q) \<and> R \<longleftrightarrow> P \<and> R \<or> Q \<and> R" by iprover | |
| 12281 | 1022 | |
| 63575 | 1023 | lemma disj_conj_distribL: "P \<or> (Q \<and> R) \<longleftrightarrow> (P \<or> Q) \<and> (P \<or> R)" by iprover | 
| 1024 | lemma disj_conj_distribR: "(P \<and> Q) \<or> R \<longleftrightarrow> (P \<or> R) \<and> (Q \<or> R)" by iprover | |
| 12281 | 1025 | |
| 60759 | 1026 | lemma imp_conjR: "(P \<longrightarrow> (Q \<and> R)) = ((P \<longrightarrow> Q) \<and> (P \<longrightarrow> R))" by iprover | 
| 1027 | lemma imp_conjL: "((P \<and> Q) \<longrightarrow> R) = (P \<longrightarrow> (Q \<longrightarrow> R))" by iprover | |
| 1028 | lemma imp_disjL: "((P \<or> Q) \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))" by iprover | |
| 12281 | 1029 | |
| 61799 | 1030 | text \<open>These two are specialized, but \<open>imp_disj_not1\<close> is useful in \<open>Auth/Yahalom\<close>.\<close> | 
| 63575 | 1031 | lemma imp_disj_not1: "(P \<longrightarrow> Q \<or> R) \<longleftrightarrow> (\<not> Q \<longrightarrow> P \<longrightarrow> R)" by blast | 
| 1032 | lemma imp_disj_not2: "(P \<longrightarrow> Q \<or> R) \<longleftrightarrow> (\<not> R \<longrightarrow> P \<longrightarrow> Q)" by blast | |
| 12281 | 1033 | |
| 63575 | 1034 | lemma imp_disj1: "((P \<longrightarrow> Q) \<or> R) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast | 
| 1035 | lemma imp_disj2: "(Q \<or> (P \<longrightarrow> R)) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast | |
| 12281 | 1036 | |
| 63575 | 1037 | lemma imp_cong: "(P = P') \<Longrightarrow> (P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<longrightarrow> Q) \<longleftrightarrow> (P' \<longrightarrow> Q'))" | 
| 21151 | 1038 | by iprover | 
| 1039 | ||
| 63575 | 1040 | lemma de_Morgan_disj: "\<not> (P \<or> Q) \<longleftrightarrow> \<not> P \<and> \<not> Q" by iprover | 
| 1041 | lemma de_Morgan_conj: "\<not> (P \<and> Q) \<longleftrightarrow> \<not> P \<or> \<not> Q" by blast | |
| 1042 | lemma not_imp: "\<not> (P \<longrightarrow> Q) \<longleftrightarrow> P \<and> \<not> Q" by blast | |
| 1043 | lemma not_iff: "P \<noteq> Q \<longleftrightarrow> (P \<longleftrightarrow> \<not> Q)" by blast | |
| 1044 | lemma disj_not1: "\<not> P \<or> Q \<longleftrightarrow> (P \<longrightarrow> Q)" by blast | |
| 1045 | lemma disj_not2: "P \<or> \<not> Q \<longleftrightarrow> (Q \<longrightarrow> P)" by blast \<comment> \<open>changes orientation :-(\<close> | |
| 1046 | lemma imp_conv_disj: "(P \<longrightarrow> Q) \<longleftrightarrow> (\<not> P) \<or> Q" by blast | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
62958diff
changeset | 1047 | lemma disj_imp: "P \<or> Q \<longleftrightarrow> \<not> P \<longrightarrow> Q" by blast | 
| 12281 | 1048 | |
| 63575 | 1049 | lemma iff_conv_conj_imp: "(P \<longleftrightarrow> Q) \<longleftrightarrow> (P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)" by iprover | 
| 12281 | 1050 | |
| 1051 | ||
| 63575 | 1052 | lemma cases_simp: "(P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q) \<longleftrightarrow> Q" | 
| 62390 | 1053 | \<comment> \<open>Avoids duplication of subgoals after \<open>if_split\<close>, when the true and false\<close> | 
| 61799 | 1054 | \<comment> \<open>cases boil down to the same thing.\<close> | 
| 12281 | 1055 | by blast | 
| 1056 | ||
| 63575 | 1057 | lemma not_all: "\<not> (\<forall>x. P x) \<longleftrightarrow> (\<exists>x. \<not> P x)" by blast | 
| 1058 | lemma imp_all: "((\<forall>x. P x) \<longrightarrow> Q) \<longleftrightarrow> (\<exists>x. P x \<longrightarrow> Q)" by blast | |
| 1059 | lemma not_ex: "\<not> (\<exists>x. P x) \<longleftrightarrow> (\<forall>x. \<not> P x)" by iprover | |
| 1060 | lemma imp_ex: "((\<exists>x. P x) \<longrightarrow> Q) \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q)" by iprover | |
| 1061 | lemma all_not_ex: "(\<forall>x. P x) \<longleftrightarrow> \<not> (\<exists>x. \<not> P x)" by blast | |
| 12281 | 1062 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 1063 | declare All_def [no_atp] | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1064 | |
| 63575 | 1065 | lemma ex_disj_distrib: "(\<exists>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>x. P x) \<or> (\<exists>x. Q x)" by iprover | 
| 1066 | lemma all_conj_distrib: "(\<forall>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>x. P x) \<and> (\<forall>x. Q x)" by iprover | |
| 12281 | 1067 | |
| 60758 | 1068 | text \<open> | 
| 63575 | 1069 | \<^medskip> The \<open>\<and>\<close> congruence rule: not included by default! | 
| 60758 | 1070 | May slow rewrite proofs down by as much as 50\%\<close> | 
| 12281 | 1071 | |
| 63575 | 1072 | lemma conj_cong: "P = P' \<Longrightarrow> (P' \<Longrightarrow> Q = Q') \<Longrightarrow> (P \<and> Q) = (P' \<and> Q')" | 
| 17589 | 1073 | by iprover | 
| 12281 | 1074 | |
| 63575 | 1075 | lemma rev_conj_cong: "Q = Q' \<Longrightarrow> (Q' \<Longrightarrow> P = P') \<Longrightarrow> (P \<and> Q) = (P' \<and> Q')" | 
| 17589 | 1076 | by iprover | 
| 12281 | 1077 | |
| 61799 | 1078 | text \<open>The \<open>|\<close> congruence rule: not included by default!\<close> | 
| 12281 | 1079 | |
| 63575 | 1080 | lemma disj_cong: "P = P' \<Longrightarrow> (\<not> P' \<Longrightarrow> Q = Q') \<Longrightarrow> (P \<or> Q) = (P' \<or> Q')" | 
| 12281 | 1081 | by blast | 
| 1082 | ||
| 1083 | ||
| 63575 | 1084 | text \<open>\<^medskip> if-then-else rules\<close> | 
| 12281 | 1085 | |
| 32068 | 1086 | lemma if_True [code]: "(if True then x else y) = x" | 
| 63575 | 1087 | unfolding If_def by blast | 
| 12281 | 1088 | |
| 32068 | 1089 | lemma if_False [code]: "(if False then x else y) = y" | 
| 63575 | 1090 | unfolding If_def by blast | 
| 12281 | 1091 | |
| 60759 | 1092 | lemma if_P: "P \<Longrightarrow> (if P then x else y) = x" | 
| 63575 | 1093 | unfolding If_def by blast | 
| 12281 | 1094 | |
| 60759 | 1095 | lemma if_not_P: "\<not> P \<Longrightarrow> (if P then x else y) = y" | 
| 63575 | 1096 | unfolding If_def by blast | 
| 12281 | 1097 | |
| 62390 | 1098 | lemma if_split: "P (if Q then x else y) = ((Q \<longrightarrow> P x) \<and> (\<not> Q \<longrightarrow> P y))" | 
| 12281 | 1099 | apply (rule case_split [of Q]) | 
| 15481 | 1100 | apply (simplesubst if_P) | 
| 63575 | 1101 | prefer 3 | 
| 1102 | apply (simplesubst if_not_P) | |
| 1103 | apply blast+ | |
| 12281 | 1104 | done | 
| 1105 | ||
| 62390 | 1106 | lemma if_split_asm: "P (if Q then x else y) = (\<not> ((Q \<and> \<not> P x) \<or> (\<not> Q \<and> \<not> P y)))" | 
| 63575 | 1107 | by (simplesubst if_split) blast | 
| 12281 | 1108 | |
| 62390 | 1109 | lemmas if_splits [no_atp] = if_split if_split_asm | 
| 12281 | 1110 | |
| 1111 | lemma if_cancel: "(if c then x else x) = x" | |
| 63575 | 1112 | by (simplesubst if_split) blast | 
| 12281 | 1113 | |
| 1114 | lemma if_eq_cancel: "(if x = y then y else x) = x" | |
| 63575 | 1115 | by (simplesubst if_split) blast | 
| 12281 | 1116 | |
| 60759 | 1117 | lemma if_bool_eq_conj: "(if P then Q else R) = ((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R))" | 
| 61799 | 1118 | \<comment> \<open>This form is useful for expanding \<open>if\<close>s on the RIGHT of the \<open>\<Longrightarrow>\<close> symbol.\<close> | 
| 62390 | 1119 | by (rule if_split) | 
| 12281 | 1120 | |
| 60759 | 1121 | lemma if_bool_eq_disj: "(if P then Q else R) = ((P \<and> Q) \<or> (\<not> P \<and> R))" | 
| 61799 | 1122 | \<comment> \<open>And this form is useful for expanding \<open>if\<close>s on the LEFT.\<close> | 
| 62390 | 1123 | by (simplesubst if_split) blast | 
| 12281 | 1124 | |
| 63575 | 1125 | lemma Eq_TrueI: "P \<Longrightarrow> P \<equiv> True" unfolding atomize_eq by iprover | 
| 1126 | lemma Eq_FalseI: "\<not> P \<Longrightarrow> P \<equiv> False" unfolding atomize_eq by iprover | |
| 12281 | 1127 | |
| 63575 | 1128 | text \<open>\<^medskip> let rules for simproc\<close> | 
| 15423 | 1129 | |
| 60759 | 1130 | lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" | 
| 15423 | 1131 | by (unfold Let_def) | 
| 1132 | ||
| 60759 | 1133 | lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" | 
| 15423 | 1134 | by (unfold Let_def) | 
| 1135 | ||
| 60758 | 1136 | text \<open> | 
| 16999 | 1137 | The following copy of the implication operator is useful for | 
| 1138 | fine-tuning congruence rules. It instructs the simplifier to simplify | |
| 1139 | its premise. | |
| 60758 | 1140 | \<close> | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1141 | |
| 63575 | 1142 | definition simp_implies :: "prop \<Rightarrow> prop \<Rightarrow> prop" (infixr "=simp=>" 1) | 
| 67399 | 1143 | where "simp_implies \<equiv> (\<Longrightarrow>)" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1144 | |
| 18457 | 1145 | lemma simp_impliesI: | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1146 | assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1147 | shows "PROP P =simp=> PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1148 | apply (unfold simp_implies_def) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1149 | apply (rule PQ) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1150 | apply assumption | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1151 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1152 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1153 | lemma simp_impliesE: | 
| 25388 | 1154 | assumes PQ: "PROP P =simp=> PROP Q" | 
| 63575 | 1155 | and P: "PROP P" | 
| 1156 | and QR: "PROP Q \<Longrightarrow> PROP R" | |
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1157 | shows "PROP R" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1158 | apply (rule QR) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1159 | apply (rule PQ [unfolded simp_implies_def]) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1160 | apply (rule P) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1161 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1162 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1163 | lemma simp_implies_cong: | 
| 60759 | 1164 | assumes PP' :"PROP P \<equiv> PROP P'" | 
| 63575 | 1165 | and P'QQ': "PROP P' \<Longrightarrow> (PROP Q \<equiv> PROP Q')" | 
| 60759 | 1166 | shows "(PROP P =simp=> PROP Q) \<equiv> (PROP P' =simp=> PROP Q')" | 
| 63575 | 1167 | unfolding simp_implies_def | 
| 1168 | proof (rule equal_intr_rule) | |
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1169 | assume PQ: "PROP P \<Longrightarrow> PROP Q" | 
| 63575 | 1170 | and P': "PROP P'" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1171 | from PP' [symmetric] and P' have "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1172 | by (rule equal_elim_rule1) | 
| 23553 | 1173 | then have "PROP Q" by (rule PQ) | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1174 | with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1175 | next | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1176 | assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" | 
| 63575 | 1177 | and P: "PROP P" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1178 | from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) | 
| 23553 | 1179 | then have "PROP Q'" by (rule P'Q') | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1180 | with P'QQ' [OF P', symmetric] show "PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1181 | by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1182 | qed | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1183 | |
| 20944 | 1184 | lemma uncurry: | 
| 1185 | assumes "P \<longrightarrow> Q \<longrightarrow> R" | |
| 1186 | shows "P \<and> Q \<longrightarrow> R" | |
| 23553 | 1187 | using assms by blast | 
| 20944 | 1188 | |
| 1189 | lemma iff_allI: | |
| 1190 | assumes "\<And>x. P x = Q x" | |
| 1191 | shows "(\<forall>x. P x) = (\<forall>x. Q x)" | |
| 23553 | 1192 | using assms by blast | 
| 20944 | 1193 | |
| 1194 | lemma iff_exI: | |
| 1195 | assumes "\<And>x. P x = Q x" | |
| 1196 | shows "(\<exists>x. P x) = (\<exists>x. Q x)" | |
| 23553 | 1197 | using assms by blast | 
| 20944 | 1198 | |
| 63575 | 1199 | lemma all_comm: "(\<forall>x y. P x y) = (\<forall>y x. P x y)" | 
| 20944 | 1200 | by blast | 
| 1201 | ||
| 63575 | 1202 | lemma ex_comm: "(\<exists>x y. P x y) = (\<exists>y x. P x y)" | 
| 20944 | 1203 | by blast | 
| 1204 | ||
| 48891 | 1205 | ML_file "Tools/simpdata.ML" | 
| 60758 | 1206 | ML \<open>open Simpdata\<close> | 
| 42455 | 1207 | |
| 60758 | 1208 | setup \<open> | 
| 58826 | 1209 | map_theory_simpset (put_simpset HOL_basic_ss) #> | 
| 1210 | Simplifier.method_setup Splitter.split_modifiers | |
| 60758 | 1211 | \<close> | 
| 42455 | 1212 | |
| 60759 | 1213 | simproc_setup defined_Ex ("\<exists>x. P x") = \<open>fn _ => Quantifier1.rearrange_ex\<close>
 | 
| 1214 | simproc_setup defined_All ("\<forall>x. P x") = \<open>fn _ => Quantifier1.rearrange_all\<close>
 | |
| 21671 | 1215 | |
| 61799 | 1216 | text \<open>Simproc for proving \<open>(y = x) \<equiv> False\<close> from premise \<open>\<not> (x = y)\<close>:\<close> | 
| 24035 | 1217 | |
| 60758 | 1218 | simproc_setup neq ("x = y") = \<open>fn _ =>
 | 
| 63575 | 1219 | let | 
| 1220 |     val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | |
| 1221 | fun is_neq eq lhs rhs thm = | |
| 1222 | (case Thm.prop_of thm of | |
| 1223 | _ $ (Not $ (eq' $ l' $ r')) => | |
| 1224 | Not = HOLogic.Not andalso eq' = eq andalso | |
| 1225 | r' aconv lhs andalso l' aconv rhs | |
| 1226 | | _ => false); | |
| 1227 | fun proc ss ct = | |
| 1228 | (case Thm.term_of ct of | |
| 1229 | eq $ lhs $ rhs => | |
| 1230 | (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of ss) of | |
| 1231 | SOME thm => SOME (thm RS neq_to_EQ_False) | |
| 1232 | | NONE => NONE) | |
| 1233 | | _ => NONE); | |
| 1234 | in proc end; | |
| 60758 | 1235 | \<close> | 
| 24035 | 1236 | |
| 60758 | 1237 | simproc_setup let_simp ("Let x f") = \<open>
 | 
| 63575 | 1238 | let | 
| 1239 | fun count_loose (Bound i) k = if i >= k then 1 else 0 | |
| 1240 | | count_loose (s $ t) k = count_loose s k + count_loose t k | |
| 1241 | | count_loose (Abs (_, _, t)) k = count_loose t (k + 1) | |
| 1242 | | count_loose _ _ = 0; | |
| 1243 |     fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) =
 | |
| 1244 | (case t of | |
| 1245 | Abs (_, _, t') => count_loose t' 0 <= 1 | |
| 1246 | | _ => true); | |
| 1247 | in | |
| 1248 | fn _ => fn ctxt => fn ct => | |
| 1249 | if is_trivial_let (Thm.term_of ct) | |
| 1250 |       then SOME @{thm Let_def} (*no or one ocurrence of bound variable*)
 | |
| 1251 | else | |
| 1252 | let (*Norbert Schirmer's case*) | |
| 1253 | val t = Thm.term_of ct; | |
| 1254 | val ([t'], ctxt') = Variable.import_terms false [t] ctxt; | |
| 1255 | in | |
| 1256 | Option.map (hd o Variable.export ctxt' ctxt o single) | |
| 1257 |             (case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *)
 | |
| 1258 | if is_Free x orelse is_Bound x orelse is_Const x | |
| 1259 |               then SOME @{thm Let_def}
 | |
| 1260 | else | |
| 1261 | let | |
| 1262 | val n = case f of (Abs (x, _, _)) => x | _ => "x"; | |
| 1263 | val cx = Thm.cterm_of ctxt x; | |
| 1264 | val xT = Thm.typ_of_cterm cx; | |
| 1265 | val cf = Thm.cterm_of ctxt f; | |
| 1266 | val fx_g = Simplifier.rewrite ctxt (Thm.apply cf cx); | |
| 1267 | val (_ $ _ $ g) = Thm.prop_of fx_g; | |
| 1268 | val g' = abstract_over (x, g); | |
| 1269 | val abs_g'= Abs (n, xT, g'); | |
| 1270 | in | |
| 1271 | if g aconv g' then | |
| 1272 | let | |
| 1273 | val rl = | |
| 1274 |                         infer_instantiate ctxt [(("f", 0), cf), (("x", 0), cx)] @{thm Let_unfold};
 | |
| 1275 | in SOME (rl OF [fx_g]) end | |
| 1276 | else if (Envir.beta_eta_contract f) aconv (Envir.beta_eta_contract abs_g') | |
| 1277 | then NONE (*avoid identity conversion*) | |
| 1278 | else | |
| 1279 | let | |
| 1280 | val g'x = abs_g' $ x; | |
| 1281 | val g_g'x = Thm.symmetric (Thm.beta_conversion false (Thm.cterm_of ctxt g'x)); | |
| 1282 | val rl = | |
| 1283 |                         @{thm Let_folded} |> infer_instantiate ctxt
 | |
| 1284 |                           [(("f", 0), Thm.cterm_of ctxt f),
 | |
| 1285 |                            (("x", 0), cx),
 | |
| 1286 |                            (("g", 0), Thm.cterm_of ctxt abs_g')];
 | |
| 1287 | in SOME (rl OF [Thm.transitive fx_g g_g'x]) end | |
| 1288 | end | |
| 1289 | | _ => NONE) | |
| 1290 | end | |
| 1291 | end | |
| 1292 | \<close> | |
| 24035 | 1293 | |
| 21151 | 1294 | lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 1295 | proof | |
| 23389 | 1296 | assume "True \<Longrightarrow> PROP P" | 
| 1297 | from this [OF TrueI] show "PROP P" . | |
| 21151 | 1298 | next | 
| 1299 | assume "PROP P" | |
| 23389 | 1300 | then show "PROP P" . | 
| 21151 | 1301 | qed | 
| 1302 | ||
| 59864 | 1303 | lemma implies_True_equals: "(PROP P \<Longrightarrow> True) \<equiv> Trueprop True" | 
| 61169 | 1304 | by standard (intro TrueI) | 
| 59864 | 1305 | |
| 1306 | lemma False_implies_equals: "(False \<Longrightarrow> P) \<equiv> Trueprop True" | |
| 61169 | 1307 | by standard simp_all | 
| 59864 | 1308 | |
| 60183 
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
 nipkow parents: 
60169diff
changeset | 1309 | (* This is not made a simp rule because it does not improve any proofs | 
| 
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
 nipkow parents: 
60169diff
changeset | 1310 | but slows some AFP entries down by 5% (cpu time). May 2015 *) | 
| 63575 | 1311 | lemma implies_False_swap: | 
| 1312 | "NO_MATCH (Trueprop False) P \<Longrightarrow> | |
| 1313 | (False \<Longrightarrow> PROP P \<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow> False \<Longrightarrow> PROP Q)" | |
| 1314 | by (rule swap_prems_eq) | |
| 60169 
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
 nipkow parents: 
60151diff
changeset | 1315 | |
| 21151 | 1316 | lemma ex_simps: | 
| 60759 | 1317 | "\<And>P Q. (\<exists>x. P x \<and> Q) = ((\<exists>x. P x) \<and> Q)" | 
| 1318 | "\<And>P Q. (\<exists>x. P \<and> Q x) = (P \<and> (\<exists>x. Q x))" | |
| 1319 | "\<And>P Q. (\<exists>x. P x \<or> Q) = ((\<exists>x. P x) \<or> Q)" | |
| 1320 | "\<And>P Q. (\<exists>x. P \<or> Q x) = (P \<or> (\<exists>x. Q x))" | |
| 1321 | "\<And>P Q. (\<exists>x. P x \<longrightarrow> Q) = ((\<forall>x. P x) \<longrightarrow> Q)" | |
| 1322 | "\<And>P Q. (\<exists>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<exists>x. Q x))" | |
| 61799 | 1323 | \<comment> \<open>Miniscoping: pushing in existential quantifiers.\<close> | 
| 21151 | 1324 | by (iprover | blast)+ | 
| 1325 | ||
| 1326 | lemma all_simps: | |
| 60759 | 1327 | "\<And>P Q. (\<forall>x. P x \<and> Q) = ((\<forall>x. P x) \<and> Q)" | 
| 1328 | "\<And>P Q. (\<forall>x. P \<and> Q x) = (P \<and> (\<forall>x. Q x))" | |
| 1329 | "\<And>P Q. (\<forall>x. P x \<or> Q) = ((\<forall>x. P x) \<or> Q)" | |
| 1330 | "\<And>P Q. (\<forall>x. P \<or> Q x) = (P \<or> (\<forall>x. Q x))" | |
| 1331 | "\<And>P Q. (\<forall>x. P x \<longrightarrow> Q) = ((\<exists>x. P x) \<longrightarrow> Q)" | |
| 1332 | "\<And>P Q. (\<forall>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<forall>x. Q x))" | |
| 61799 | 1333 | \<comment> \<open>Miniscoping: pushing in universal quantifiers.\<close> | 
| 21151 | 1334 | by (iprover | blast)+ | 
| 15481 | 1335 | |
| 21671 | 1336 | lemmas [simp] = | 
| 63575 | 1337 | triv_forall_equality \<comment> \<open>prunes params\<close> | 
| 1338 | True_implies_equals implies_True_equals \<comment> \<open>prune \<open>True\<close> in asms\<close> | |
| 1339 | False_implies_equals \<comment> \<open>prune \<open>False\<close> in asms\<close> | |
| 21671 | 1340 | if_True | 
| 1341 | if_False | |
| 1342 | if_cancel | |
| 1343 | if_eq_cancel | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67405diff
changeset | 1344 | imp_disjL \<comment> \<open>In general it seems wrong to add distributive laws by default: they | 
| 63575 | 1345 | might cause exponential blow-up. But \<open>imp_disjL\<close> has been in for a while | 
| 20973 | 1346 | and cannot be removed without affecting existing proofs. Moreover, | 
| 63575 | 1347 | rewriting by \<open>(P \<or> Q \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))\<close> might be justified on the | 
| 1348 | grounds that it allows simplification of \<open>R\<close> in the two cases.\<close> | |
| 21671 | 1349 | conj_assoc | 
| 1350 | disj_assoc | |
| 1351 | de_Morgan_conj | |
| 1352 | de_Morgan_disj | |
| 1353 | imp_disj1 | |
| 1354 | imp_disj2 | |
| 1355 | not_imp | |
| 1356 | disj_not1 | |
| 1357 | not_all | |
| 1358 | not_ex | |
| 1359 | cases_simp | |
| 1360 | the_eq_trivial | |
| 1361 | the_sym_eq_trivial | |
| 1362 | ex_simps | |
| 1363 | all_simps | |
| 1364 | simp_thms | |
| 1365 | ||
| 1366 | lemmas [cong] = imp_cong simp_implies_cong | |
| 62390 | 1367 | lemmas [split] = if_split | 
| 20973 | 1368 | |
| 60758 | 1369 | ML \<open>val HOL_ss = simpset_of @{context}\<close>
 | 
| 20973 | 1370 | |
| 63575 | 1371 | text \<open>Simplifies \<open>x\<close> assuming \<open>c\<close> and \<open>y\<close> assuming \<open>\<not> c\<close>.\<close> | 
| 20944 | 1372 | lemma if_cong: | 
| 1373 | assumes "b = c" | |
| 63575 | 1374 | and "c \<Longrightarrow> x = u" | 
| 1375 | and "\<not> c \<Longrightarrow> y = v" | |
| 20944 | 1376 | shows "(if b then x else y) = (if c then u else v)" | 
| 38525 | 1377 | using assms by simp | 
| 20944 | 1378 | |
| 63575 | 1379 | text \<open>Prevents simplification of \<open>x\<close> and \<open>y\<close>: | 
| 60758 | 1380 | faster and allows the execution of functional programs.\<close> | 
| 20944 | 1381 | lemma if_weak_cong [cong]: | 
| 1382 | assumes "b = c" | |
| 1383 | shows "(if b then x else y) = (if c then x else y)" | |
| 23553 | 1384 | using assms by (rule arg_cong) | 
| 20944 | 1385 | |
| 60758 | 1386 | text \<open>Prevents simplification of t: much faster\<close> | 
| 20944 | 1387 | lemma let_weak_cong: | 
| 1388 | assumes "a = b" | |
| 1389 | shows "(let x = a in t x) = (let x = b in t x)" | |
| 23553 | 1390 | using assms by (rule arg_cong) | 
| 20944 | 1391 | |
| 60758 | 1392 | text \<open>To tidy up the result of a simproc. Only the RHS will be simplified.\<close> | 
| 20944 | 1393 | lemma eq_cong2: | 
| 1394 | assumes "u = u'" | |
| 1395 | shows "(t \<equiv> u) \<equiv> (t \<equiv> u')" | |
| 23553 | 1396 | using assms by simp | 
| 20944 | 1397 | |
| 63575 | 1398 | lemma if_distrib: "f (if c then x else y) = (if c then f x else f y)" | 
| 20944 | 1399 | by simp | 
| 1400 | ||
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67719diff
changeset | 1401 | lemma if_distribR: "(if b then f else g) x = (if b then f x else g x)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67719diff
changeset | 1402 | by simp | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67719diff
changeset | 1403 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1404 | lemma all_if_distrib: "(\<forall>x. if x = a then P x else Q x) \<longleftrightarrow> P a \<and> (\<forall>x. x\<noteq>a \<longrightarrow> Q x)" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1405 | by auto | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1406 | |
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1407 | lemma ex_if_distrib: "(\<exists>x. if x = a then P x else Q x) \<longleftrightarrow> P a \<or> (\<exists>x. x\<noteq>a \<and> Q x)" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1408 | by auto | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1409 | |
| 67719 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1410 | lemma if_if_eq_conj: "(if P then if Q then x else y else y) = (if P \<and> Q then x else y)" | 
| 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1411 | by simp | 
| 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1412 | |
| 63575 | 1413 | text \<open>As a simplification rule, it replaces all function equalities by | 
| 60758 | 1414 | first-order equalities.\<close> | 
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
44121diff
changeset | 1415 | lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)" | 
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
44121diff
changeset | 1416 | by auto | 
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
44121diff
changeset | 1417 | |
| 17459 | 1418 | |
| 60758 | 1419 | subsubsection \<open>Generic cases and induction\<close> | 
| 17459 | 1420 | |
| 60758 | 1421 | text \<open>Rule projections:\<close> | 
| 1422 | ML \<open> | |
| 32172 | 1423 | structure Project_Rule = Project_Rule | 
| 25388 | 1424 | ( | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1425 |   val conjunct1 = @{thm conjunct1}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1426 |   val conjunct2 = @{thm conjunct2}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1427 |   val mp = @{thm mp}
 | 
| 59929 | 1428 | ); | 
| 60758 | 1429 | \<close> | 
| 17459 | 1430 | |
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1431 | context | 
| 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1432 | begin | 
| 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1433 | |
| 59990 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1434 | qualified definition "induct_forall P \<equiv> \<forall>x. P x" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1435 | qualified definition "induct_implies A B \<equiv> A \<longrightarrow> B" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1436 | qualified definition "induct_equal x y \<equiv> x = y" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1437 | qualified definition "induct_conj A B \<equiv> A \<and> B" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1438 | qualified definition "induct_true \<equiv> True" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1439 | qualified definition "induct_false \<equiv> False" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35115diff
changeset | 1440 | |
| 59929 | 1441 | lemma induct_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (induct_forall (\<lambda>x. P x))" | 
| 18457 | 1442 | by (unfold atomize_all induct_forall_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1443 | |
| 59929 | 1444 | lemma induct_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (induct_implies A B)" | 
| 18457 | 1445 | by (unfold atomize_imp induct_implies_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1446 | |
| 59929 | 1447 | lemma induct_equal_eq: "(x \<equiv> y) \<equiv> Trueprop (induct_equal x y)" | 
| 18457 | 1448 | by (unfold atomize_eq induct_equal_def) | 
| 1449 | ||
| 59929 | 1450 | lemma induct_conj_eq: "(A &&& B) \<equiv> Trueprop (induct_conj A B)" | 
| 18457 | 1451 | by (unfold atomize_conj induct_conj_def) | 
| 1452 | ||
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1453 | lemmas induct_atomize' = induct_forall_eq induct_implies_eq induct_conj_eq | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1454 | lemmas induct_atomize = induct_atomize' induct_equal_eq | 
| 45607 | 1455 | lemmas induct_rulify' [symmetric] = induct_atomize' | 
| 1456 | lemmas induct_rulify [symmetric] = induct_atomize | |
| 18457 | 1457 | lemmas induct_rulify_fallback = | 
| 1458 | induct_forall_def induct_implies_def induct_equal_def induct_conj_def | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1459 | induct_true_def induct_false_def | 
| 18457 | 1460 | |
| 11989 | 1461 | lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) = | 
| 1462 | induct_conj (induct_forall A) (induct_forall B)" | |
| 17589 | 1463 | by (unfold induct_forall_def induct_conj_def) iprover | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1464 | |
| 11989 | 1465 | lemma induct_implies_conj: "induct_implies C (induct_conj A B) = | 
| 1466 | induct_conj (induct_implies C A) (induct_implies C B)" | |
| 17589 | 1467 | by (unfold induct_implies_def induct_conj_def) iprover | 
| 11989 | 1468 | |
| 59929 | 1469 | lemma induct_conj_curry: "(induct_conj A B \<Longrightarrow> PROP C) \<equiv> (A \<Longrightarrow> B \<Longrightarrow> PROP C)" | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1470 | proof | 
| 59929 | 1471 | assume r: "induct_conj A B \<Longrightarrow> PROP C" | 
| 1472 | assume ab: A B | |
| 1473 | show "PROP C" by (rule r) (simp add: induct_conj_def ab) | |
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1474 | next | 
| 59929 | 1475 | assume r: "A \<Longrightarrow> B \<Longrightarrow> PROP C" | 
| 1476 | assume ab: "induct_conj A B" | |
| 1477 | show "PROP C" by (rule r) (simp_all add: ab [unfolded induct_conj_def]) | |
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1478 | qed | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1479 | |
| 11989 | 1480 | lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1481 | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1482 | lemma induct_trueI: "induct_true" | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1483 | by (simp add: induct_true_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1484 | |
| 60758 | 1485 | text \<open>Method setup.\<close> | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1486 | |
| 58826 | 1487 | ML_file "~~/src/Tools/induct.ML" | 
| 60758 | 1488 | ML \<open> | 
| 32171 | 1489 | structure Induct = Induct | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1490 | ( | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1491 |   val cases_default = @{thm case_split}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1492 |   val atomize = @{thms induct_atomize}
 | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1493 |   val rulify = @{thms induct_rulify'}
 | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1494 |   val rulify_fallback = @{thms induct_rulify_fallback}
 | 
| 34988 
cca208c8d619
Added setup for simplification of equality constraints in cases rules.
 berghofe parents: 
34917diff
changeset | 1495 |   val equal_def = @{thm induct_equal_def}
 | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1496 |   fun dest_def (Const (@{const_name induct_equal}, _) $ t $ u) = SOME (t, u)
 | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1497 | | dest_def _ = NONE | 
| 58957 | 1498 |   fun trivial_tac ctxt = match_tac ctxt @{thms induct_trueI}
 | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1499 | ) | 
| 60758 | 1500 | \<close> | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1501 | |
| 48891 | 1502 | ML_file "~~/src/Tools/induction.ML" | 
| 45014 
0e847655b2d8
New proof method "induction" that gives induction hypotheses the name IH.
 nipkow parents: 
44921diff
changeset | 1503 | |
| 60758 | 1504 | declaration \<open> | 
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1505 | fn _ => Induct.map_simpset (fn ss => ss | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1506 | addsimprocs | 
| 61144 | 1507 |       [Simplifier.make_simproc @{context} "swap_induct_false"
 | 
| 1508 |         {lhss = [@{term "induct_false \<Longrightarrow> PROP P \<Longrightarrow> PROP Q"}],
 | |
| 1509 | proc = fn _ => fn _ => fn ct => | |
| 1510 | (case Thm.term_of ct of | |
| 1511 |             _ $ (P as _ $ @{const induct_false}) $ (_ $ Q $ _) =>
 | |
| 1512 | if P <> Q then SOME Drule.swap_prems_eq else NONE | |
| 62913 | 1513 | | _ => NONE)}, | 
| 61144 | 1514 |        Simplifier.make_simproc @{context} "induct_equal_conj_curry"
 | 
| 1515 |         {lhss = [@{term "induct_conj P Q \<Longrightarrow> PROP R"}],
 | |
| 1516 | proc = fn _ => fn _ => fn ct => | |
| 1517 | (case Thm.term_of ct of | |
| 1518 | _ $ (_ $ P) $ _ => | |
| 1519 | let | |
| 1520 |                 fun is_conj (@{const induct_conj} $ P $ Q) =
 | |
| 1521 | is_conj P andalso is_conj Q | |
| 1522 |                   | is_conj (Const (@{const_name induct_equal}, _) $ _ $ _) = true
 | |
| 1523 |                   | is_conj @{const induct_true} = true
 | |
| 1524 |                   | is_conj @{const induct_false} = true
 | |
| 1525 | | is_conj _ = false | |
| 1526 |               in if is_conj P then SOME @{thm induct_conj_curry} else NONE end
 | |
| 62913 | 1527 | | _ => NONE)}] | 
| 54742 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 wenzelm parents: 
53146diff
changeset | 1528 | |> Simplifier.set_mksimps (fn ctxt => | 
| 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 wenzelm parents: 
53146diff
changeset | 1529 | Simpdata.mksimps Simpdata.mksimps_pairs ctxt #> | 
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1530 |         map (rewrite_rule ctxt (map Thm.symmetric @{thms induct_rulify_fallback}))))
 | 
| 60758 | 1531 | \<close> | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1532 | |
| 60758 | 1533 | text \<open>Pre-simplification of induction and cases rules\<close> | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1534 | |
| 59929 | 1535 | lemma [induct_simp]: "(\<And>x. induct_equal x t \<Longrightarrow> PROP P x) \<equiv> PROP P t" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1536 | unfolding induct_equal_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1537 | proof | 
| 59929 | 1538 | assume r: "\<And>x. x = t \<Longrightarrow> PROP P x" | 
| 1539 | show "PROP P t" by (rule r [OF refl]) | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1540 | next | 
| 59929 | 1541 | fix x | 
| 1542 | assume "PROP P t" "x = t" | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1543 | then show "PROP P x" by simp | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1544 | qed | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1545 | |
| 59929 | 1546 | lemma [induct_simp]: "(\<And>x. induct_equal t x \<Longrightarrow> PROP P x) \<equiv> PROP P t" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1547 | unfolding induct_equal_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1548 | proof | 
| 59929 | 1549 | assume r: "\<And>x. t = x \<Longrightarrow> PROP P x" | 
| 1550 | show "PROP P t" by (rule r [OF refl]) | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1551 | next | 
| 59929 | 1552 | fix x | 
| 1553 | assume "PROP P t" "t = x" | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1554 | then show "PROP P x" by simp | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1555 | qed | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1556 | |
| 59929 | 1557 | lemma [induct_simp]: "(induct_false \<Longrightarrow> P) \<equiv> Trueprop induct_true" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1558 | unfolding induct_false_def induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1559 | by (iprover intro: equal_intr_rule) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1560 | |
| 59929 | 1561 | lemma [induct_simp]: "(induct_true \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1562 | unfolding induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1563 | proof | 
| 59929 | 1564 | assume "True \<Longrightarrow> PROP P" | 
| 1565 | then show "PROP P" using TrueI . | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1566 | next | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1567 | assume "PROP P" | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1568 | then show "PROP P" . | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1569 | qed | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1570 | |
| 59929 | 1571 | lemma [induct_simp]: "(PROP P \<Longrightarrow> induct_true) \<equiv> Trueprop induct_true" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1572 | unfolding induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1573 | by (iprover intro: equal_intr_rule) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1574 | |
| 62958 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 wenzelm parents: 
62913diff
changeset | 1575 | lemma [induct_simp]: "(\<And>x::'a::{}. induct_true) \<equiv> Trueprop induct_true"
 | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1576 | unfolding induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1577 | by (iprover intro: equal_intr_rule) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1578 | |
| 59929 | 1579 | lemma [induct_simp]: "induct_implies induct_true P \<equiv> P" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1580 | by (simp add: induct_implies_def induct_true_def) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1581 | |
| 59929 | 1582 | lemma [induct_simp]: "x = x \<longleftrightarrow> True" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1583 | by (rule simp_thms) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1584 | |
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1585 | end | 
| 18457 | 1586 | |
| 48891 | 1587 | ML_file "~~/src/Tools/induct_tacs.ML" | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1588 | |
| 20944 | 1589 | |
| 60758 | 1590 | subsubsection \<open>Coherent logic\<close> | 
| 28325 | 1591 | |
| 55632 | 1592 | ML_file "~~/src/Tools/coherent.ML" | 
| 60758 | 1593 | ML \<open> | 
| 32734 | 1594 | structure Coherent = Coherent | 
| 28325 | 1595 | ( | 
| 55632 | 1596 |   val atomize_elimL = @{thm atomize_elimL};
 | 
| 1597 |   val atomize_exL = @{thm atomize_exL};
 | |
| 1598 |   val atomize_conjL = @{thm atomize_conjL};
 | |
| 1599 |   val atomize_disjL = @{thm atomize_disjL};
 | |
| 1600 |   val operator_names = [@{const_name HOL.disj}, @{const_name HOL.conj}, @{const_name Ex}];
 | |
| 28325 | 1601 | ); | 
| 60758 | 1602 | \<close> | 
| 28325 | 1603 | |
| 1604 | ||
| 60758 | 1605 | subsubsection \<open>Reorienting equalities\<close> | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1606 | |
| 60758 | 1607 | ML \<open> | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1608 | signature REORIENT_PROC = | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1609 | sig | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1610 | val add : (term -> bool) -> theory -> theory | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51692diff
changeset | 1611 | val proc : morphism -> Proof.context -> cterm -> thm option | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1612 | end; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1613 | |
| 33523 | 1614 | structure Reorient_Proc : REORIENT_PROC = | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1615 | struct | 
| 33523 | 1616 | structure Data = Theory_Data | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1617 | ( | 
| 33523 | 1618 | type T = ((term -> bool) * stamp) list; | 
| 1619 | val empty = []; | |
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1620 | val extend = I; | 
| 67405 
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
 wenzelm parents: 
67399diff
changeset | 1621 | fun merge data : T = Library.merge (eq_snd (op =)) data; | 
| 33523 | 1622 | ); | 
| 1623 | fun add m = Data.map (cons (m, stamp ())); | |
| 1624 | fun matches thy t = exists (fn (m, _) => m t) (Data.get thy); | |
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1625 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1626 |   val meta_reorient = @{thm eq_commute [THEN eq_reflection]};
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51692diff
changeset | 1627 | fun proc phi ctxt ct = | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1628 | let | 
| 42361 | 1629 | val thy = Proof_Context.theory_of ctxt; | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1630 | in | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1631 | case Thm.term_of ct of | 
| 33523 | 1632 | (_ $ t $ u) => if matches thy u then NONE else SOME meta_reorient | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1633 | | _ => NONE | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1634 | end; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1635 | end; | 
| 60758 | 1636 | \<close> | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1637 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1638 | |
| 60758 | 1639 | subsection \<open>Other simple lemmas and lemma duplicates\<close> | 
| 20944 | 1640 | |
| 67091 | 1641 | lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> (\<forall>x. Q x \<longrightarrow> P x) = (\<forall>x. Q x \<longrightarrow> P' x)" | 
| 66836 | 1642 | by auto | 
| 1643 | ||
| 67091 | 1644 | lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> (\<exists>x. Q x \<and> P x) = (\<exists>x. Q x \<and> P' x)" | 
| 66836 | 1645 | by auto | 
| 1646 | ||
| 60759 | 1647 | lemma ex1_eq [iff]: "\<exists>!x. x = t" "\<exists>!x. t = x" | 
| 20944 | 1648 | by blast+ | 
| 1649 | ||
| 60759 | 1650 | lemma choice_eq: "(\<forall>x. \<exists>!y. P x y) = (\<exists>!f. \<forall>x. P x (f x))" | 
| 20944 | 1651 | apply (rule iffI) | 
| 63575 | 1652 | apply (rule_tac a = "\<lambda>x. THE y. P x y" in ex1I) | 
| 1653 | apply (fast dest!: theI') | |
| 1654 | apply (fast intro: the1_equality [symmetric]) | |
| 20944 | 1655 | apply (erule ex1E) | 
| 1656 | apply (rule allI) | |
| 1657 | apply (rule ex1I) | |
| 63575 | 1658 | apply (erule spec) | 
| 60759 | 1659 | apply (erule_tac x = "\<lambda>z. if z = x then y else f z" in allE) | 
| 20944 | 1660 | apply (erule impE) | 
| 63575 | 1661 | apply (rule allI) | 
| 1662 | apply (case_tac "xa = x") | |
| 1663 | apply (drule_tac [3] x = x in fun_cong) | |
| 1664 | apply simp_all | |
| 20944 | 1665 | done | 
| 1666 | ||
| 22218 | 1667 | lemmas eq_sym_conv = eq_commute | 
| 1668 | ||
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1669 | lemma nnf_simps: | 
| 63575 | 1670 | "(\<not> (P \<and> Q)) = (\<not> P \<or> \<not> Q)" | 
| 1671 | "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not> Q)" | |
| 1672 | "(P \<longrightarrow> Q) = (\<not> P \<or> Q)" | |
| 1673 | "(P = Q) = ((P \<and> Q) \<or> (\<not> P \<and> \<not> Q))" | |
| 1674 | "(\<not> (P = Q)) = ((P \<and> \<not> Q) \<or> (\<not> P \<and> Q))" | |
| 1675 | "(\<not> \<not> P) = P" | |
| 1676 | by blast+ | |
| 1677 | ||
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1678 | |
| 60758 | 1679 | subsection \<open>Basic ML bindings\<close> | 
| 21671 | 1680 | |
| 60758 | 1681 | ML \<open> | 
| 22129 | 1682 | val FalseE = @{thm FalseE}
 | 
| 1683 | val Let_def = @{thm Let_def}
 | |
| 1684 | val TrueI = @{thm TrueI}
 | |
| 1685 | val allE = @{thm allE}
 | |
| 1686 | val allI = @{thm allI}
 | |
| 1687 | val all_dupE = @{thm all_dupE}
 | |
| 1688 | val arg_cong = @{thm arg_cong}
 | |
| 1689 | val box_equals = @{thm box_equals}
 | |
| 1690 | val ccontr = @{thm ccontr}
 | |
| 1691 | val classical = @{thm classical}
 | |
| 1692 | val conjE = @{thm conjE}
 | |
| 1693 | val conjI = @{thm conjI}
 | |
| 1694 | val conjunct1 = @{thm conjunct1}
 | |
| 1695 | val conjunct2 = @{thm conjunct2}
 | |
| 1696 | val disjCI = @{thm disjCI}
 | |
| 1697 | val disjE = @{thm disjE}
 | |
| 1698 | val disjI1 = @{thm disjI1}
 | |
| 1699 | val disjI2 = @{thm disjI2}
 | |
| 1700 | val eq_reflection = @{thm eq_reflection}
 | |
| 1701 | val ex1E = @{thm ex1E}
 | |
| 1702 | val ex1I = @{thm ex1I}
 | |
| 1703 | val ex1_implies_ex = @{thm ex1_implies_ex}
 | |
| 1704 | val exE = @{thm exE}
 | |
| 1705 | val exI = @{thm exI}
 | |
| 1706 | val excluded_middle = @{thm excluded_middle}
 | |
| 1707 | val ext = @{thm ext}
 | |
| 1708 | val fun_cong = @{thm fun_cong}
 | |
| 1709 | val iffD1 = @{thm iffD1}
 | |
| 1710 | val iffD2 = @{thm iffD2}
 | |
| 1711 | val iffI = @{thm iffI}
 | |
| 1712 | val impE = @{thm impE}
 | |
| 1713 | val impI = @{thm impI}
 | |
| 1714 | val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
 | |
| 1715 | val mp = @{thm mp}
 | |
| 1716 | val notE = @{thm notE}
 | |
| 1717 | val notI = @{thm notI}
 | |
| 1718 | val not_all = @{thm not_all}
 | |
| 1719 | val not_ex = @{thm not_ex}
 | |
| 1720 | val not_iff = @{thm not_iff}
 | |
| 1721 | val not_not = @{thm not_not}
 | |
| 1722 | val not_sym = @{thm not_sym}
 | |
| 1723 | val refl = @{thm refl}
 | |
| 1724 | val rev_mp = @{thm rev_mp}
 | |
| 1725 | val spec = @{thm spec}
 | |
| 1726 | val ssubst = @{thm ssubst}
 | |
| 1727 | val subst = @{thm subst}
 | |
| 1728 | val sym = @{thm sym}
 | |
| 1729 | val trans = @{thm trans}
 | |
| 60758 | 1730 | \<close> | 
| 21671 | 1731 | |
| 55239 | 1732 | ML_file "Tools/cnf.ML" | 
| 1733 | ||
| 21671 | 1734 | |
| 61799 | 1735 | section \<open>\<open>NO_MATCH\<close> simproc\<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1736 | |
| 60758 | 1737 | text \<open> | 
| 63575 | 1738 | The simplification procedure can be used to avoid simplification of terms | 
| 1739 | of a certain form. | |
| 60758 | 1740 | \<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1741 | |
| 63575 | 1742 | definition NO_MATCH :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | 
| 1743 | where "NO_MATCH pat val \<equiv> True" | |
| 58830 | 1744 | |
| 63575 | 1745 | lemma NO_MATCH_cong[cong]: "NO_MATCH pat val = NO_MATCH pat val" | 
| 1746 | by (rule refl) | |
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1747 | |
| 58830 | 1748 | declare [[coercion_args NO_MATCH - -]] | 
| 1749 | ||
| 60758 | 1750 | simproc_setup NO_MATCH ("NO_MATCH pat val") = \<open>fn _ => fn ctxt => fn ct =>
 | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1751 | let | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1752 | val thy = Proof_Context.theory_of ctxt | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1753 | val dest_binop = Term.dest_comb #> apfst (Term.dest_comb #> snd) | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1754 | val m = Pattern.matches thy (dest_binop (Thm.term_of ct)) | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1755 |   in if m then NONE else SOME @{thm NO_MATCH_def} end
 | 
| 60758 | 1756 | \<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1757 | |
| 60758 | 1758 | text \<open> | 
| 59779 | 1759 |   This setup ensures that a rewrite rule of the form @{term "NO_MATCH pat val \<Longrightarrow> t"}
 | 
| 63575 | 1760 | is only applied, if the pattern \<open>pat\<close> does not match the value \<open>val\<close>. | 
| 60758 | 1761 | \<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1762 | |
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1763 | |
| 63575 | 1764 | text\<open> | 
| 1765 | Tagging a premise of a simp rule with ASSUMPTION forces the simplifier | |
| 1766 | not to simplify the argument and to solve it by an assumption. | |
| 1767 | \<close> | |
| 61202 | 1768 | |
| 63575 | 1769 | definition ASSUMPTION :: "bool \<Rightarrow> bool" | 
| 1770 | where "ASSUMPTION A \<equiv> A" | |
| 61202 | 1771 | |
| 1772 | lemma ASSUMPTION_cong[cong]: "ASSUMPTION A = ASSUMPTION A" | |
| 63575 | 1773 | by (rule refl) | 
| 61202 | 1774 | |
| 1775 | lemma ASSUMPTION_I: "A \<Longrightarrow> ASSUMPTION A" | |
| 63575 | 1776 | by (simp add: ASSUMPTION_def) | 
| 61202 | 1777 | |
| 1778 | lemma ASSUMPTION_D: "ASSUMPTION A \<Longrightarrow> A" | |
| 63575 | 1779 | by (simp add: ASSUMPTION_def) | 
| 61202 | 1780 | |
| 61222 | 1781 | setup \<open> | 
| 61202 | 1782 | let | 
| 1783 | val asm_sol = mk_solver "ASSUMPTION" (fn ctxt => | |
| 1784 |     resolve_tac ctxt [@{thm ASSUMPTION_I}] THEN'
 | |
| 1785 | resolve_tac ctxt (Simplifier.prems_of ctxt)) | |
| 1786 | in | |
| 1787 | map_theory_simpset (fn ctxt => Simplifier.addSolver (ctxt,asm_sol)) | |
| 1788 | end | |
| 61222 | 1789 | \<close> | 
| 61202 | 1790 | |
| 1791 | ||
| 60758 | 1792 | subsection \<open>Code generator setup\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1793 | |
| 60758 | 1794 | subsubsection \<open>Generic code generator preprocessor setup\<close> | 
| 31151 | 1795 | |
| 63575 | 1796 | lemma conj_left_cong: "P \<longleftrightarrow> Q \<Longrightarrow> P \<and> R \<longleftrightarrow> Q \<and> R" | 
| 53146 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1797 | by (fact arg_cong) | 
| 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1798 | |
| 63575 | 1799 | lemma disj_left_cong: "P \<longleftrightarrow> Q \<Longrightarrow> P \<or> R \<longleftrightarrow> Q \<or> R" | 
| 53146 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1800 | by (fact arg_cong) | 
| 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1801 | |
| 60758 | 1802 | setup \<open> | 
| 58826 | 1803 | Code_Preproc.map_pre (put_simpset HOL_basic_ss) #> | 
| 1804 | Code_Preproc.map_post (put_simpset HOL_basic_ss) #> | |
| 1805 | Code_Simp.map_ss (put_simpset HOL_basic_ss #> | |
| 1806 |   Simplifier.add_cong @{thm conj_left_cong} #>
 | |
| 1807 |   Simplifier.add_cong @{thm disj_left_cong})
 | |
| 60758 | 1808 | \<close> | 
| 31151 | 1809 | |
| 53146 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1810 | |
| 60758 | 1811 | subsubsection \<open>Equality\<close> | 
| 24844 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1812 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1813 | class equal = | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1814 | fixes equal :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1815 | assumes equal_eq: "equal x y \<longleftrightarrow> x = y" | 
| 26513 | 1816 | begin | 
| 1817 | ||
| 67399 | 1818 | lemma equal: "equal = (=)" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1819 | by (rule ext equal_eq)+ | 
| 28346 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1820 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1821 | lemma equal_refl: "equal x x \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1822 | unfolding equal by rule+ | 
| 28346 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1823 | |
| 67399 | 1824 | lemma eq_equal: "(=) \<equiv> equal" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1825 | by (rule eq_reflection) (rule ext, rule ext, rule sym, rule equal_eq) | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1826 | |
| 26513 | 1827 | end | 
| 1828 | ||
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1829 | declare eq_equal [symmetric, code_post] | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1830 | declare eq_equal [code] | 
| 30966 | 1831 | |
| 60758 | 1832 | setup \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51692diff
changeset | 1833 | Code_Preproc.map_pre (fn ctxt => | 
| 61144 | 1834 | ctxt addsimprocs | 
| 1835 |       [Simplifier.make_simproc @{context} "equal"
 | |
| 1836 |         {lhss = [@{term HOL.eq}],
 | |
| 1837 | proc = fn _ => fn _ => fn ct => | |
| 1838 | (case Thm.term_of ct of | |
| 1839 |             Const (_, Type (@{type_name fun}, [Type _, _])) => SOME @{thm eq_equal}
 | |
| 62913 | 1840 | | _ => NONE)}]) | 
| 60758 | 1841 | \<close> | 
| 31151 | 1842 | |
| 30966 | 1843 | |
| 60758 | 1844 | subsubsection \<open>Generic code generator foundation\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1845 | |
| 60758 | 1846 | text \<open>Datatype @{typ bool}\<close>
 | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1847 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1848 | code_datatype True False | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1849 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1850 | lemma [code]: | 
| 33185 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1851 | shows "False \<and> P \<longleftrightarrow> False" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1852 | and "True \<and> P \<longleftrightarrow> P" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1853 | and "P \<and> False \<longleftrightarrow> False" | 
| 63575 | 1854 | and "P \<and> True \<longleftrightarrow> P" | 
| 1855 | by simp_all | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1856 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1857 | lemma [code]: | 
| 33185 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1858 | shows "False \<or> P \<longleftrightarrow> P" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1859 | and "True \<or> P \<longleftrightarrow> True" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1860 | and "P \<or> False \<longleftrightarrow> P" | 
| 63575 | 1861 | and "P \<or> True \<longleftrightarrow> True" | 
| 1862 | by simp_all | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1863 | |
| 33185 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1864 | lemma [code]: | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1865 | shows "(False \<longrightarrow> P) \<longleftrightarrow> True" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1866 | and "(True \<longrightarrow> P) \<longleftrightarrow> P" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1867 | and "(P \<longrightarrow> False) \<longleftrightarrow> \<not> P" | 
| 63575 | 1868 | and "(P \<longrightarrow> True) \<longleftrightarrow> True" | 
| 1869 | by simp_all | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1870 | |
| 60758 | 1871 | text \<open>More about @{typ prop}\<close>
 | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1872 | |
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1873 | lemma [code nbe]: | 
| 58826 | 1874 | shows "(True \<Longrightarrow> PROP Q) \<equiv> PROP Q" | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1875 | and "(PROP Q \<Longrightarrow> True) \<equiv> Trueprop True" | 
| 63575 | 1876 | and "(P \<Longrightarrow> R) \<equiv> Trueprop (P \<longrightarrow> R)" | 
| 1877 | by (auto intro!: equal_intr_rule) | |
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1878 | |
| 63575 | 1879 | lemma Trueprop_code [code]: "Trueprop True \<equiv> Code_Generator.holds" | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1880 | by (auto intro!: equal_intr_rule holds) | 
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1881 | |
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1882 | declare Trueprop_code [symmetric, code_post] | 
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1883 | |
| 60758 | 1884 | text \<open>Equality\<close> | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1885 | |
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1886 | declare simp_thms(6) [code nbe] | 
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1887 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1888 | instantiation itself :: (type) equal | 
| 31132 | 1889 | begin | 
| 1890 | ||
| 63575 | 1891 | definition equal_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool" | 
| 1892 | where "equal_itself x y \<longleftrightarrow> x = y" | |
| 31132 | 1893 | |
| 63575 | 1894 | instance | 
| 1895 | by standard (fact equal_itself_def) | |
| 31132 | 1896 | |
| 1897 | end | |
| 1898 | ||
| 63575 | 1899 | lemma equal_itself_code [code]: "equal TYPE('a) TYPE('a) \<longleftrightarrow> True"
 | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1900 | by (simp add: equal) | 
| 31132 | 1901 | |
| 61076 | 1902 | setup \<open>Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a::type \<Rightarrow> 'a \<Rightarrow> bool"})\<close>
 | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 1903 | |
| 67399 | 1904 | lemma equal_alias_cert: "OFCLASS('a, equal_class) \<equiv> (((=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool) \<equiv> equal)"
 | 
| 63575 | 1905 | (is "?ofclass \<equiv> ?equal") | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 1906 | proof | 
| 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 1907 | assume "PROP ?ofclass" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1908 | show "PROP ?equal" | 
| 60758 | 1909 |     by (tactic \<open>ALLGOALS (resolve_tac @{context} [Thm.unconstrainT @{thm eq_equal}])\<close>)
 | 
| 1910 | (fact \<open>PROP ?ofclass\<close>) | |
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 1911 | next | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1912 | assume "PROP ?equal" | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 1913 | show "PROP ?ofclass" proof | 
| 60758 | 1914 | qed (simp add: \<open>PROP ?equal\<close>) | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 1915 | qed | 
| 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 1916 | |
| 61076 | 1917 | setup \<open>Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a::equal \<Rightarrow> 'a \<Rightarrow> bool"})\<close>
 | 
| 58826 | 1918 | |
| 60758 | 1919 | setup \<open>Nbe.add_const_alias @{thm equal_alias_cert}\<close>
 | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1920 | |
| 60758 | 1921 | text \<open>Cases\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1922 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1923 | lemma Let_case_cert: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1924 | assumes "CASE \<equiv> (\<lambda>x. Let x f)" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1925 | shows "CASE x \<equiv> f x" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1926 | using assms by simp_all | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1927 | |
| 60758 | 1928 | setup \<open> | 
| 66251 
cd935b7cb3fb
proper concept of code declaration wrt. atomicity and Isar declarations
 haftmann parents: 
66109diff
changeset | 1929 |   Code.declare_case_global @{thm Let_case_cert} #>
 | 
| 
cd935b7cb3fb
proper concept of code declaration wrt. atomicity and Isar declarations
 haftmann parents: 
66109diff
changeset | 1930 |   Code.declare_undefined_global @{const_name undefined}
 | 
| 60758 | 1931 | \<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1932 | |
| 54890 
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
 haftmann parents: 
54742diff
changeset | 1933 | declare [[code abort: undefined]] | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1934 | |
| 38972 | 1935 | |
| 60758 | 1936 | subsubsection \<open>Generic code generator target languages\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1937 | |
| 60758 | 1938 | text \<open>type @{typ bool}\<close>
 | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1939 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1940 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1941 | type_constructor bool \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1942 | (SML) "bool" and (OCaml) "bool" and (Haskell) "Bool" and (Scala) "Boolean" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1943 | | constant True \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1944 | (SML) "true" and (OCaml) "true" and (Haskell) "True" and (Scala) "true" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1945 | | constant False \<rightharpoonup> | 
| 58826 | 1946 | (SML) "false" and (OCaml) "false" and (Haskell) "False" and (Scala) "false" | 
| 34294 | 1947 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1948 | code_reserved SML | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1949 | bool true false | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1950 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1951 | code_reserved OCaml | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1952 | bool | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1953 | |
| 34294 | 1954 | code_reserved Scala | 
| 1955 | Boolean | |
| 1956 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1957 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1958 | constant Not \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1959 | (SML) "not" and (OCaml) "not" and (Haskell) "not" and (Scala) "'! _" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1960 | | constant HOL.conj \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1961 | (SML) infixl 1 "andalso" and (OCaml) infixl 3 "&&" and (Haskell) infixr 3 "&&" and (Scala) infixl 3 "&&" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1962 | | constant HOL.disj \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1963 | (SML) infixl 0 "orelse" and (OCaml) infixl 2 "||" and (Haskell) infixl 2 "||" and (Scala) infixl 1 "||" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1964 | | constant HOL.implies \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1965 | (SML) "!(if (_)/ then (_)/ else true)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1966 | and (OCaml) "!(if (_)/ then (_)/ else true)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1967 | and (Haskell) "!(if (_)/ then (_)/ else True)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1968 | and (Scala) "!(if ((_))/ (_)/ else true)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1969 | | constant If \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1970 | (SML) "!(if (_)/ then (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1971 | and (OCaml) "!(if (_)/ then (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1972 | and (Haskell) "!(if (_)/ then (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1973 | and (Scala) "!(if ((_))/ (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1974 | |
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1975 | code_reserved SML | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1976 | not | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1977 | |
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1978 | code_reserved OCaml | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1979 | not | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1980 | |
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1981 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1982 | code_module Pure \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1983 | (SML) HOL and (OCaml) HOL and (Haskell) HOL and (Scala) HOL | 
| 39026 | 1984 | |
| 63575 | 1985 | text \<open>Using built-in Haskell equality.\<close> | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1986 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1987 | type_class equal \<rightharpoonup> (Haskell) "Eq" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1988 | | constant HOL.equal \<rightharpoonup> (Haskell) infix 4 "==" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1989 | | constant HOL.eq \<rightharpoonup> (Haskell) infix 4 "==" | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1990 | |
| 63575 | 1991 | text \<open>\<open>undefined\<close>\<close> | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1992 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1993 | constant undefined \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1994 | (SML) "!(raise/ Fail/ \"undefined\")" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1995 | and (OCaml) "failwith/ \"undefined\"" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1996 | and (Haskell) "error/ \"undefined\"" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1997 | and (Scala) "!sys.error(\"undefined\")" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 1998 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1999 | |
| 60758 | 2000 | subsubsection \<open>Evaluation and normalization by evaluation\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2001 | |
| 60758 | 2002 | method_setup eval = \<open> | 
| 58826 | 2003 | let | 
| 2004 | fun eval_tac ctxt = | |
| 2005 | let val conv = Code_Runtime.dynamic_holds_conv ctxt | |
| 58839 | 2006 | in | 
| 2007 | CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 conv)) ctxt) THEN' | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59028diff
changeset | 2008 | resolve_tac ctxt [TrueI] | 
| 58839 | 2009 | end | 
| 58826 | 2010 | in | 
| 2011 | Scan.succeed (SIMPLE_METHOD' o eval_tac) | |
| 2012 | end | |
| 60758 | 2013 | \<close> "solve goal by evaluation" | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2014 | |
| 60758 | 2015 | method_setup normalization = \<open> | 
| 46190 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 wenzelm parents: 
46161diff
changeset | 2016 | Scan.succeed (fn ctxt => | 
| 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 wenzelm parents: 
46161diff
changeset | 2017 | SIMPLE_METHOD' | 
| 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 wenzelm parents: 
46161diff
changeset | 2018 | (CHANGED_PROP o | 
| 55757 | 2019 | (CONVERSION (Nbe.dynamic_conv ctxt) | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59028diff
changeset | 2020 | THEN_ALL_NEW (TRY o resolve_tac ctxt [TrueI])))) | 
| 60758 | 2021 | \<close> "solve goal by normalization" | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2022 | |
| 31902 | 2023 | |
| 60758 | 2024 | subsection \<open>Counterexample Search Units\<close> | 
| 33084 | 2025 | |
| 60758 | 2026 | subsubsection \<open>Quickcheck\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2027 | |
| 33084 | 2028 | quickcheck_params [size = 5, iterations = 50] | 
| 2029 | ||
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2030 | |
| 60758 | 2031 | subsubsection \<open>Nitpick setup\<close> | 
| 30309 
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
 blanchet parents: 
30254diff
changeset | 2032 | |
| 59028 | 2033 | named_theorems nitpick_unfold "alternative definitions of constants as needed by Nitpick" | 
| 2034 | and nitpick_simp "equational specification of constants as needed by Nitpick" | |
| 2035 | and nitpick_psimp "partial equational specification of constants as needed by Nitpick" | |
| 2036 | and nitpick_choice_spec "choice specification of constants as needed by Nitpick" | |
| 30980 | 2037 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41636diff
changeset | 2038 | declare if_bool_eq_conj [nitpick_unfold, no_atp] | 
| 63575 | 2039 | and if_bool_eq_disj [no_atp] | 
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41636diff
changeset | 2040 | |
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2041 | |
| 60758 | 2042 | subsection \<open>Preprocessing for the predicate compiler\<close> | 
| 33084 | 2043 | |
| 59028 | 2044 | named_theorems code_pred_def "alternative definitions of constants for the Predicate Compiler" | 
| 2045 | and code_pred_inline "inlining definitions for the Predicate Compiler" | |
| 2046 | and code_pred_simp "simplification rules for the optimisations in the Predicate Compiler" | |
| 33084 | 2047 | |
| 2048 | ||
| 60758 | 2049 | subsection \<open>Legacy tactics and ML bindings\<close> | 
| 21671 | 2050 | |
| 60758 | 2051 | ML \<open> | 
| 58826 | 2052 | (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *) | 
| 2053 | local | |
| 2054 |     fun wrong_prem (Const (@{const_name All}, _) $ Abs (_, _, t)) = wrong_prem t
 | |
| 2055 | | wrong_prem (Bound _) = true | |
| 2056 | | wrong_prem _ = false; | |
| 2057 | val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of); | |
| 61914 | 2058 | fun smp i = funpow i (fn m => filter_right ([spec] RL m)) [mp]; | 
| 58826 | 2059 | in | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59028diff
changeset | 2060 | fun smp_tac ctxt j = EVERY' [dresolve_tac ctxt (smp j), assume_tac ctxt]; | 
| 58826 | 2061 | end; | 
| 22839 | 2062 | |
| 58826 | 2063 | local | 
| 2064 | val nnf_ss = | |
| 2065 |       simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms simp_thms nnf_simps});
 | |
| 2066 | in | |
| 2067 | fun nnf_conv ctxt = Simplifier.rewrite (put_simpset nnf_ss ctxt); | |
| 2068 | end | |
| 60758 | 2069 | \<close> | 
| 21671 | 2070 | |
| 38866 | 2071 | hide_const (open) eq equal | 
| 2072 | ||
| 14357 | 2073 | end |