| author | wenzelm | 
| Tue, 27 Aug 2002 11:09:35 +0200 | |
| changeset 13535 | 007559e981c7 | 
| parent 13175 | 81082cfa5618 | 
| child 13780 | af7b79271364 | 
| permissions | -rw-r--r-- | 
| 615 | 1 | (* Title: ZF/ZF.thy | 
| 0 | 2 | ID: $Id$ | 
| 3 | Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | Zermelo-Fraenkel Set Theory | |
| 7 | *) | |
| 8 | ||
| 13108 | 9 | ZF = Let + | 
| 0 | 10 | |
| 3906 | 11 | global | 
| 12 | ||
| 0 | 13 | types | 
| 615 | 14 | i | 
| 0 | 15 | |
| 16 | arities | |
| 13144 | 17 | i :: "term" | 
| 0 | 18 | |
| 19 | consts | |
| 20 | ||
| 13144 | 21 |   "0"         :: "i"                  ("0")   (*the empty set*)
 | 
| 22 | Pow :: "i => i" (*power sets*) | |
| 23 | Inf :: "i" (*infinite set*) | |
| 0 | 24 | |
| 25 | (* Bounded Quantifiers *) | |
| 26 | ||
| 13144 | 27 | Ball, Bex :: "[i, i => o] => o" | 
| 0 | 28 | |
| 29 | (* General Union and Intersection *) | |
| 30 | ||
| 13144 | 31 | Union,Inter :: "i => i" | 
| 0 | 32 | |
| 33 | (* Variations on Replacement *) | |
| 34 | ||
| 13144 | 35 | PrimReplace :: "[i, [i, i] => o] => i" | 
| 36 | Replace :: "[i, [i, i] => o] => i" | |
| 37 | RepFun :: "[i, i => i] => i" | |
| 38 | Collect :: "[i, i => o] => i" | |
| 0 | 39 | |
| 40 | (* Descriptions *) | |
| 41 | ||
| 1401 | 42 | The :: (i => o) => i (binder "THE " 10) | 
| 13144 | 43 |   If          :: "[o, i, i] => i"     ("(if (_)/ then (_)/ else (_))" [10] 10)
 | 
| 6068 | 44 | |
| 45 | syntax | |
| 13144 | 46 |   old_if      :: "[o, i, i] => i"   ("if '(_,_,_')")
 | 
| 0 | 47 | |
| 6068 | 48 | translations | 
| 49 | "if(P,a,b)" => "If(P,a,b)" | |
| 50 | ||
| 51 | ||
| 52 | consts | |
| 0 | 53 | (* Finite Sets *) | 
| 54 | ||
| 13144 | 55 | Upair, cons :: "[i, i] => i" | 
| 56 | succ :: "i => i" | |
| 0 | 57 | |
| 615 | 58 | (* Ordered Pairing *) | 
| 0 | 59 | |
| 13144 | 60 | Pair :: "[i, i] => i" | 
| 61 | fst, snd :: "i => i" | |
| 62 | split :: "[[i, i] => 'a, i] => 'a::logic" (*for pattern-matching*) | |
| 0 | 63 | |
| 64 | (* Sigma and Pi Operators *) | |
| 65 | ||
| 13144 | 66 | Sigma, Pi :: "[i, i => i] => i" | 
| 0 | 67 | |
| 68 | (* Relations and Functions *) | |
| 69 | ||
| 13144 | 70 | domain :: "i => i" | 
| 71 | range :: "i => i" | |
| 72 | field :: "i => i" | |
| 73 | converse :: "i => i" | |
| 74 | relation :: "i => o" (*recognizes sets of pairs*) | |
| 75 | function :: "i => o" (*recognizes functions; can have non-pairs*) | |
| 76 | Lambda :: "[i, i => i] => i" | |
| 77 | restrict :: "[i, i] => i" | |
| 0 | 78 | |
| 79 | (* Infixes in order of decreasing precedence *) | |
| 80 | ||
| 13144 | 81 | "``" :: "[i, i] => i" (infixl 90) (*image*) | 
| 82 | "-``" :: "[i, i] => i" (infixl 90) (*inverse image*) | |
| 83 | "`" :: "[i, i] => i" (infixl 90) (*function application*) | |
| 84 | (*"*" :: "[i, i] => i" (infixr 80) (*Cartesian product*)*) | |
| 85 | "Int" :: "[i, i] => i" (infixl 70) (*binary intersection*) | |
| 86 | "Un" :: "[i, i] => i" (infixl 65) (*binary union*) | |
| 87 | "-" :: "[i, i] => i" (infixl 65) (*set difference*) | |
| 88 | (*"->" :: "[i, i] => i" (infixr 60) (*function space*)*) | |
| 89 | "<=" :: "[i, i] => o" (infixl 50) (*subset relation*) | |
| 90 | ":" :: "[i, i] => o" (infixl 50) (*membership relation*) | |
| 91 | (*"~:" :: "[i, i] => o" (infixl 50) (*negated membership relation*)*) | |
| 0 | 92 | |
| 93 | ||
| 615 | 94 | types | 
| 95 | is | |
| 3692 | 96 | patterns | 
| 615 | 97 | |
| 98 | syntax | |
| 13144 | 99 |   ""          :: "i => is"                   ("_")
 | 
| 100 |   "@Enum"     :: "[i, is] => is"             ("_,/ _")
 | |
| 101 | "~:" :: "[i, i] => o" (infixl 50) | |
| 102 |   "@Finset"   :: "is => i"                   ("{(_)}")
 | |
| 103 |   "@Tuple"    :: "[i, is] => i"              ("<(_,/ _)>")
 | |
| 104 |   "@Collect"  :: "[pttrn, i, o] => i"        ("(1{_: _ ./ _})")
 | |
| 105 |   "@Replace"  :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})")
 | |
| 106 |   "@RepFun"   :: "[i, pttrn, i] => i"        ("(1{_ ./ _: _})" [51,0,51])
 | |
| 107 |   "@INTER"    :: "[pttrn, i, i] => i"        ("(3INT _:_./ _)" 10)
 | |
| 108 |   "@UNION"    :: "[pttrn, i, i] => i"        ("(3UN _:_./ _)" 10)
 | |
| 109 |   "@PROD"     :: "[pttrn, i, i] => i"        ("(3PROD _:_./ _)" 10)
 | |
| 110 |   "@SUM"      :: "[pttrn, i, i] => i"        ("(3SUM _:_./ _)" 10)
 | |
| 111 | "->" :: "[i, i] => i" (infixr 60) | |
| 112 | "*" :: "[i, i] => i" (infixr 80) | |
| 113 |   "@lam"      :: "[pttrn, i, i] => i"        ("(3lam _:_./ _)" 10)
 | |
| 114 |   "@Ball"     :: "[pttrn, i, o] => o"        ("(3ALL _:_./ _)" 10)
 | |
| 115 |   "@Bex"      :: "[pttrn, i, o] => o"        ("(3EX _:_./ _)" 10)
 | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 116 | |
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 117 | (** Patterns -- extends pre-defined type "pttrn" used in abstractions **) | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 118 | |
| 13144 | 119 |   "@pattern"  :: "patterns => pttrn"         ("<_>")
 | 
| 120 |   ""          :: "pttrn => patterns"         ("_")
 | |
| 121 |   "@patterns" :: "[pttrn, patterns] => patterns"  ("_,/_")
 | |
| 615 | 122 | |
| 0 | 123 | translations | 
| 615 | 124 | "x ~: y" == "~ (x : y)" | 
| 0 | 125 |   "{x, xs}"     == "cons(x, {xs})"
 | 
| 126 |   "{x}"         == "cons(x, 0)"
 | |
| 127 |   "{x:A. P}"    == "Collect(A, %x. P)"
 | |
| 128 |   "{y. x:A, Q}" == "Replace(A, %x y. Q)"
 | |
| 615 | 129 |   "{b. x:A}"    == "RepFun(A, %x. b)"
 | 
| 0 | 130 |   "INT x:A. B"  == "Inter({B. x:A})"
 | 
| 131 |   "UN x:A. B"   == "Union({B. x:A})"
 | |
| 132 | "PROD x:A. B" => "Pi(A, %x. B)" | |
| 133 | "SUM x:A. B" => "Sigma(A, %x. B)" | |
| 49 | 134 | "A -> B" => "Pi(A, _K(B))" | 
| 135 | "A * B" => "Sigma(A, _K(B))" | |
| 0 | 136 | "lam x:A. f" == "Lambda(A, %x. f)" | 
| 137 | "ALL x:A. P" == "Ball(A, %x. P)" | |
| 138 | "EX x:A. P" == "Bex(A, %x. P)" | |
| 37 | 139 | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 140 | "<x, y, z>" == "<x, <y, z>>" | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 141 | "<x, y>" == "Pair(x, y)" | 
| 2286 | 142 | "%<x,y,zs>.b" == "split(%x <y,zs>.b)" | 
| 3840 | 143 | "%<x,y>.b" == "split(%x y. b)" | 
| 2286 | 144 | |
| 0 | 145 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
11322diff
changeset | 146 | syntax (xsymbols) | 
| 13144 | 147 | "op *" :: "[i, i] => i" (infixr "\\<times>" 80) | 
| 13175 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 paulson parents: 
13144diff
changeset | 148 | "op Int" :: "[i, i] => i" (infixl "\\<inter>" 70) | 
| 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 paulson parents: 
13144diff
changeset | 149 | "op Un" :: "[i, i] => i" (infixl "\\<union>" 65) | 
| 13144 | 150 | "op ->" :: "[i, i] => i" (infixr "\\<rightarrow>" 60) | 
| 13175 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 paulson parents: 
13144diff
changeset | 151 | "op <=" :: "[i, i] => o" (infixl "\\<subseteq>" 50) | 
| 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 paulson parents: 
13144diff
changeset | 152 | "op :" :: "[i, i] => o" (infixl "\\<in>" 50) | 
| 13144 | 153 | "op ~:" :: "[i, i] => o" (infixl "\\<notin>" 50) | 
| 154 |   "@Collect"  :: "[pttrn, i, o] => i"        ("(1{_ \\<in> _ ./ _})")
 | |
| 155 |   "@Replace"  :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ \\<in> _, _})")
 | |
| 156 |   "@RepFun"   :: "[i, pttrn, i] => i"        ("(1{_ ./ _ \\<in> _})" [51,0,51])
 | |
| 157 |   "@UNION"    :: "[pttrn, i, i] => i"        ("(3\\<Union>_\\<in>_./ _)" 10)
 | |
| 158 |   "@INTER"    :: "[pttrn, i, i] => i"        ("(3\\<Inter>_\\<in>_./ _)" 10)
 | |
| 159 |   Union       :: "i =>i"                     ("\\<Union>_" [90] 90)
 | |
| 160 |   Inter       :: "i =>i"                     ("\\<Inter>_" [90] 90)
 | |
| 161 |   "@PROD"     :: "[pttrn, i, i] => i"        ("(3\\<Pi>_\\<in>_./ _)" 10)
 | |
| 162 |   "@SUM"      :: "[pttrn, i, i] => i"        ("(3\\<Sigma>_\\<in>_./ _)" 10)
 | |
| 163 |   "@lam"      :: "[pttrn, i, i] => i"        ("(3\\<lambda>_\\<in>_./ _)" 10)
 | |
| 164 |   "@Ball"     :: "[pttrn, i, o] => o"        ("(3\\<forall>_\\<in>_./ _)" 10)
 | |
| 165 |   "@Bex"      :: "[pttrn, i, o] => o"        ("(3\\<exists>_\\<in>_./ _)" 10)
 | |
| 166 |   "@Tuple"    :: "[i, is] => i"              ("\\<langle>(_,/ _)\\<rangle>")
 | |
| 167 |   "@pattern"  :: "patterns => pttrn"         ("\\<langle>_\\<rangle>")
 | |
| 2540 | 168 | |
| 6340 | 169 | syntax (HTML output) | 
| 13144 | 170 | "op *" :: "[i, i] => i" (infixr "\\<times>" 80) | 
| 6340 | 171 | |
| 2540 | 172 | |
| 690 | 173 | defs | 
| 0 | 174 | |
| 615 | 175 | (* Bounded Quantifiers *) | 
| 176 | Ball_def "Ball(A, P) == ALL x. x:A --> P(x)" | |
| 177 | Bex_def "Bex(A, P) == EX x. x:A & P(x)" | |
| 690 | 178 | |
| 615 | 179 | subset_def "A <= B == ALL x:A. x:B" | 
| 690 | 180 | succ_def "succ(i) == cons(i, i)" | 
| 181 | ||
| 3906 | 182 | |
| 3940 | 183 | local | 
| 3906 | 184 | |
| 690 | 185 | rules | 
| 0 | 186 | |
| 615 | 187 | (* ZF axioms -- see Suppes p.238 | 
| 188 | Axioms for Union, Pow and Replace state existence only, | |
| 189 | uniqueness is derivable using extensionality. *) | |
| 0 | 190 | |
| 615 | 191 | extension "A = B <-> A <= B & B <= A" | 
| 192 | Union_iff "A : Union(C) <-> (EX B:C. A:B)" | |
| 193 | Pow_iff "A : Pow(B) <-> A <= B" | |
| 0 | 194 | |
| 615 | 195 | (*We may name this set, though it is not uniquely defined.*) | 
| 196 | infinity "0:Inf & (ALL y:Inf. succ(y): Inf)" | |
| 0 | 197 | |
| 615 | 198 | (*This formulation facilitates case analysis on A.*) | 
| 199 | foundation "A=0 | (EX x:A. ALL y:x. y~:A)" | |
| 0 | 200 | |
| 615 | 201 | (*Schema axiom since predicate P is a higher-order variable*) | 
| 12762 | 202 | replacement "(ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==> | 
| 1155 | 203 | b : PrimReplace(A,P) <-> (EX x:A. P(x,b))" | 
| 615 | 204 | |
| 690 | 205 | defs | 
| 206 | ||
| 615 | 207 | (* Derived form of replacement, restricting P to its functional part. | 
| 208 | The resulting set (for functional P) is the same as with | |
| 209 | PrimReplace, but the rules are simpler. *) | |
| 0 | 210 | |
| 3840 | 211 | Replace_def "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))" | 
| 615 | 212 | |
| 213 | (* Functional form of replacement -- analgous to ML's map functional *) | |
| 0 | 214 | |
| 615 | 215 |   RepFun_def    "RepFun(A,f) == {y . x:A, y=f(x)}"
 | 
| 0 | 216 | |
| 615 | 217 | (* Separation and Pairing can be derived from the Replacement | 
| 218 | and Powerset Axioms using the following definitions. *) | |
| 0 | 219 | |
| 615 | 220 |   Collect_def   "Collect(A,P) == {y . x:A, x=y & P(x)}"
 | 
| 0 | 221 | |
| 615 | 222 | (*Unordered pairs (Upair) express binary union/intersection and cons; | 
| 223 |     set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
 | |
| 0 | 224 | |
| 615 | 225 |   Upair_def   "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
 | 
| 226 | cons_def "cons(a,A) == Upair(a,a) Un A" | |
| 227 | ||
| 2872 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 228 | (* Difference, general intersection, binary union and small intersection *) | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 229 | |
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 230 |   Diff_def      "A - B    == { x:A . ~(x:B) }"
 | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 231 |   Inter_def     "Inter(A) == { x:Union(A) . ALL y:A. x:y}"
 | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 232 | Un_def "A Un B == Union(Upair(A,B))" | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 233 | Int_def "A Int B == Inter(Upair(A,B))" | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 234 | |
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 235 | (* Definite descriptions -- via Replace over the set "1" *) | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 236 | |
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 237 |   the_def       "The(P)    == Union({y . x:{0}, P(y)})"
 | 
| 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 paulson parents: 
2540diff
changeset | 238 | if_def "if(P,a,b) == THE z. P & z=a | ~P & z=b" | 
| 0 | 239 | |
| 615 | 240 |   (* this "symmetric" definition works better than {{a}, {a,b}} *)
 | 
| 241 |   Pair_def      "<a,b>  == {{a,a}, {a,b}}"
 | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 242 | fst_def "fst(p) == THE a. EX b. p=<a,b>" | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 243 | snd_def "snd(p) == THE b. EX a. p=<a,b>" | 
| 12762 | 244 | split_def "split(c) == %p. c(fst(p), snd(p))" | 
| 615 | 245 |   Sigma_def     "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"
 | 
| 0 | 246 | |
| 615 | 247 | (* Operations on relations *) | 
| 0 | 248 | |
| 615 | 249 | (*converse of relation r, inverse of function*) | 
| 250 |   converse_def  "converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}"
 | |
| 0 | 251 | |
| 615 | 252 |   domain_def    "domain(r) == {x. w:r, EX y. w=<x,y>}"
 | 
| 253 | range_def "range(r) == domain(converse(r))" | |
| 254 | field_def "field(r) == domain(r) Un range(r)" | |
| 13121 | 255 | relation_def "relation(r) == ALL z:r. EX x y. z = <x,y>" | 
| 256 | function_def "function(r) == | |
| 257 | ALL x y. <x,y>:r --> (ALL y'. <x,y'>:r --> y=y')" | |
| 615 | 258 |   image_def     "r `` A  == {y : range(r) . EX x:A. <x,y> : r}"
 | 
| 259 | vimage_def "r -`` A == converse(r)``A" | |
| 0 | 260 | |
| 615 | 261 | (* Abstraction, application and Cartesian product of a family of sets *) | 
| 0 | 262 | |
| 615 | 263 |   lam_def       "Lambda(A,b) == {<x,b(x)> . x:A}"
 | 
| 13175 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 paulson parents: 
13144diff
changeset | 264 |   apply_def     "f`a == Union(f``{a})"
 | 
| 690 | 265 |   Pi_def        "Pi(A,B)  == {f: Pow(Sigma(A,B)). A<=domain(f) & function(f)}"
 | 
| 0 | 266 | |
| 12891 | 267 | (* Restrict the relation r to the domain A *) | 
| 268 |   restrict_def  "restrict(r,A) == {z : r. EX x:A. EX y. z = <x,y>}"
 | |
| 0 | 269 | |
| 270 | end | |
| 271 | ||
| 272 | ||
| 273 | ML | |
| 274 | ||
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 275 | (* Pattern-matching and 'Dependent' type operators *) | 
| 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 276 | |
| 12762 | 277 | val print_translation = | 
| 1116 | 278 |   [(*("split", split_tr'),*)
 | 
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 279 |    ("Pi",    dependent_tr' ("@PROD", "op ->")),
 | 
| 632 | 280 |    ("Sigma", dependent_tr' ("@SUM", "op *"))];
 |