104
|
1 |
\begin{thebibliography}{10}
|
|
2 |
|
|
3 |
\bibitem{abramsky90}
|
293
|
4 |
Abramsky, S.,
|
|
5 |
\newblock The lazy lambda calculus,
|
|
6 |
\newblock In {\em Resesarch Topics in Functional Programming}, D.~A. Turner,
|
|
7 |
Ed. Addison-Wesley, 1977, pp.~65--116
|
104
|
8 |
|
|
9 |
\bibitem{aczel77}
|
293
|
10 |
Aczel, P.,
|
|
11 |
\newblock An introduction to inductive definitions,
|
|
12 |
\newblock In {\em Handbook of Mathematical Logic}, J.~Barwise, Ed.
|
|
13 |
North-Holland, 1977, pp.~739--782
|
104
|
14 |
|
|
15 |
\bibitem{aczel88}
|
293
|
16 |
Aczel, P.,
|
|
17 |
\newblock {\em Non-Well-Founded Sets},
|
|
18 |
\newblock CSLI, 1988
|
104
|
19 |
|
|
20 |
\bibitem{bm79}
|
293
|
21 |
Boyer, R.~S., Moore, J.~S.,
|
|
22 |
\newblock {\em A Computational Logic},
|
|
23 |
\newblock Academic Press, 1979
|
104
|
24 |
|
|
25 |
\bibitem{camilleri92}
|
293
|
26 |
Camilleri, J., Melham, T.~F.,
|
104
|
27 |
\newblock Reasoning with inductively defined relations in the {HOL} theorem
|
293
|
28 |
prover,
|
606
|
29 |
\newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992
|
104
|
30 |
|
|
31 |
\bibitem{davey&priestley}
|
293
|
32 |
Davey, B.~A., Priestley, H.~A.,
|
|
33 |
\newblock {\em Introduction to Lattices and Order},
|
|
34 |
\newblock Cambridge Univ. Press, 1990
|
|
35 |
|
|
36 |
\bibitem{dybjer91}
|
|
37 |
Dybjer, P.,
|
|
38 |
\newblock Inductive sets and families in {Martin-L\"of's} type theory and their
|
|
39 |
set-theoretic semantics,
|
|
40 |
\newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge
|
|
41 |
Univ. Press, 1991, pp.~280--306
|
|
42 |
|
|
43 |
\bibitem{IMPS}
|
|
44 |
Farmer, W.~M., Guttman, J.~D., Thayer, F.~J.,
|
|
45 |
\newblock {IMPS}: An interactive mathematical proof system,
|
|
46 |
\newblock {\em J. Auto. Reas. {\bf 11}}, 2 (1993), 213--248
|
104
|
47 |
|
|
48 |
\bibitem{hennessy90}
|
293
|
49 |
Hennessy, M.,
|
104
|
50 |
\newblock {\em The Semantics of Programming Languages: An Elementary
|
293
|
51 |
Introduction Using Structural Operational Semantics},
|
|
52 |
\newblock Wiley, 1990
|
|
53 |
|
|
54 |
\bibitem{huet88}
|
|
55 |
Huet, G.,
|
|
56 |
\newblock Induction principles formalized in the {Calculus of Constructions},
|
|
57 |
\newblock In {\em Programming of Future Generation Computers\/} (1988),
|
|
58 |
Elsevier, pp.~205--216
|
104
|
59 |
|
|
60 |
\bibitem{melham89}
|
293
|
61 |
Melham, T.~F.,
|
|
62 |
\newblock Automating recursive type definitions in higher order logic,
|
|
63 |
\newblock In {\em Current Trends in Hardware Verification and Automated Theorem
|
|
64 |
Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989,
|
|
65 |
pp.~341--386
|
|
66 |
|
|
67 |
\bibitem{milner-ind}
|
|
68 |
Milner, R.,
|
|
69 |
\newblock How to derive inductions in {LCF},
|
|
70 |
\newblock note, Dept. Comp. Sci., Univ. Edinburgh, 1980
|
104
|
71 |
|
|
72 |
\bibitem{milner89}
|
293
|
73 |
Milner, R.,
|
|
74 |
\newblock {\em Communication and Concurrency},
|
|
75 |
\newblock Prentice-Hall, 1989
|
|
76 |
|
|
77 |
\bibitem{monahan84}
|
|
78 |
Monahan, B.~Q.,
|
|
79 |
\newblock {\em Data Type Proofs using Edinburgh {LCF}},
|
|
80 |
\newblock PhD thesis, University of Edinburgh, 1984
|
104
|
81 |
|
|
82 |
\bibitem{paulin92}
|
293
|
83 |
Paulin-Mohring, C.,
|
|
84 |
\newblock Inductive definitions in the system {Coq}: Rules and properties,
|
|
85 |
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec.
|
|
86 |
1992
|
104
|
87 |
|
293
|
88 |
\bibitem{paulson87}
|
|
89 |
Paulson, L.~C.,
|
|
90 |
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
|
|
91 |
\newblock Cambridge Univ. Press, 1987
|
104
|
92 |
|
|
93 |
\bibitem{paulson91}
|
293
|
94 |
Paulson, L.~C.,
|
|
95 |
\newblock {\em {ML} for the Working Programmer},
|
|
96 |
\newblock Cambridge Univ. Press, 1991
|
104
|
97 |
|
|
98 |
\bibitem{paulson-coind}
|
293
|
99 |
Paulson, L.~C.,
|
|
100 |
\newblock Co-induction and co-recursion in higher-order logic,
|
|
101 |
\newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993
|
104
|
102 |
|
|
103 |
\bibitem{isabelle-intro}
|
293
|
104 |
Paulson, L.~C.,
|
|
105 |
\newblock Introduction to {Isabelle},
|
|
106 |
\newblock Tech. Rep. 280, Comp. Lab., Univ. Cambridge, 1993
|
|
107 |
|
|
108 |
\bibitem{paulson-set-I}
|
|
109 |
Paulson, L.~C.,
|
|
110 |
\newblock Set theory for verification: {I}. {From} foundations to functions,
|
|
111 |
\newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
|
104
|
112 |
|
|
113 |
\bibitem{paulson-set-II}
|
293
|
114 |
Paulson, L.~C.,
|
|
115 |
\newblock Set theory for verification: {II}. {Induction} and recursion,
|
1184
|
116 |
\newblock Tech. Rep. 312, Comp. Lab., Univ. Cambridge, 1993,
|
|
117 |
\newblock To appear in J. Auto. Reas.
|
293
|
118 |
|
|
119 |
\bibitem{paulson-final}
|
|
120 |
Paulson, L.~C.,
|
|
121 |
\newblock A concrete final coalgebra theorem for {ZF} set theory,
|
606
|
122 |
\newblock Tech. Rep. 334, Comp. Lab., Univ. Cambridge, 1994
|
104
|
123 |
|
|
124 |
\bibitem{pitts94}
|
293
|
125 |
Pitts, A.~M.,
|
|
126 |
\newblock A co-induction principle for recursively defined domains,
|
606
|
127 |
\newblock {\em Theoretical Comput. Sci. {\bf 124}\/} (1994), 195--219
|
293
|
128 |
|
|
129 |
\bibitem{saaltink-fme}
|
|
130 |
Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I.,
|
|
131 |
\newblock An {EVES} data abstraction example,
|
|
132 |
\newblock In {\em FME '93: Industrial-Strength Formal Methods\/} (1993),
|
|
133 |
J.~C.~P. Woodcock, P.~G. Larsen, Eds., Springer, pp.~578--596,
|
|
134 |
\newblock LNCS 670
|
104
|
135 |
|
|
136 |
\bibitem{szasz93}
|
293
|
137 |
Szasz, N.,
|
104
|
138 |
\newblock A machine checked proof that {Ackermann's} function is not primitive
|
293
|
139 |
recursive,
|
|
140 |
\newblock In {\em Logical Environments}, G.~Huet, G.~Plotkin, Eds. Cambridge
|
|
141 |
Univ. Press, 1993, pp.~317--338
|
104
|
142 |
|
|
143 |
\end{thebibliography}
|