| 
9243
 | 
     1  | 
(*  Title:      HOL/IMP/Examples.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     David von Oheimb, TUM
  | 
| 
 | 
     4  | 
    Copyright   2000 TUM
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
12431
 | 
     7  | 
header "Examples"
  | 
| 
 | 
     8  | 
  | 
| 
16417
 | 
     9  | 
theory Examples imports Natural begin
  | 
| 
12431
 | 
    10  | 
  | 
| 
27362
 | 
    11  | 
definition
  | 
| 
 | 
    12  | 
  factorial :: "loc => loc => com" where
  | 
| 
 | 
    13  | 
  "factorial a b = (b :== (%s. 1);
  | 
| 
12431
 | 
    14  | 
                    \<WHILE> (%s. s a ~= 0) \<DO>
  | 
| 
27362
 | 
    15  | 
                    (b :== (%s. s b * s a); a :== (%s. s a - 1)))"
  | 
| 
12431
 | 
    16  | 
  | 
| 
 | 
    17  | 
declare update_def [simp]
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
subsection "An example due to Tony Hoare"
  | 
| 
9243
 | 
    20  | 
  | 
| 
18372
 | 
    21  | 
lemma lemma1:
  | 
| 
 | 
    22  | 
  assumes 1: "!x. P x \<longrightarrow> Q x"
  | 
| 
 | 
    23  | 
    and 2: "\<langle>w,s\<rangle> \<longrightarrow>\<^sub>c t"
  | 
| 
 | 
    24  | 
  shows "w = While P c \<Longrightarrow> \<langle>While Q c,t\<rangle> \<longrightarrow>\<^sub>c u \<Longrightarrow> \<langle>While Q c,s\<rangle> \<longrightarrow>\<^sub>c u"
  | 
| 
 | 
    25  | 
  using 2 apply induct
  | 
| 
 | 
    26  | 
  using 1 apply auto
  | 
| 
 | 
    27  | 
  done
  | 
| 
12431
 | 
    28  | 
  | 
| 
18372
 | 
    29  | 
lemma lemma2 [rule_format (no_asm)]:
  | 
| 
 | 
    30  | 
  "[| !x. P x \<longrightarrow> Q x; \<langle>w,s\<rangle> \<longrightarrow>\<^sub>c u |] ==>
  | 
| 
12431
 | 
    31  | 
  !c. w = While Q c \<longrightarrow> \<langle>While P c; While Q c,s\<rangle> \<longrightarrow>\<^sub>c u"
  | 
| 
 | 
    32  | 
apply (erule evalc.induct)
  | 
| 
 | 
    33  | 
apply (simp_all (no_asm_simp))
  | 
| 
 | 
    34  | 
apply blast
  | 
| 
 | 
    35  | 
apply (case_tac "P s")
  | 
| 
 | 
    36  | 
apply auto
  | 
| 
 | 
    37  | 
done
  | 
| 
 | 
    38  | 
  | 
| 
18372
 | 
    39  | 
lemma Hoare_example: "!x. P x \<longrightarrow> Q x ==>
  | 
| 
12431
 | 
    40  | 
  (\<langle>While P c; While Q c, s\<rangle> \<longrightarrow>\<^sub>c t) = (\<langle>While Q c, s\<rangle> \<longrightarrow>\<^sub>c t)"
  | 
| 
 | 
    41  | 
  by (blast intro: lemma1 lemma2 dest: semi [THEN iffD1])
  | 
| 
 | 
    42  | 
  | 
| 
9243
 | 
    43  | 
  | 
| 
12431
 | 
    44  | 
subsection "Factorial"
  | 
| 
 | 
    45  | 
  | 
| 
18372
 | 
    46  | 
lemma factorial_3: "a~=b ==>
  | 
| 
 | 
    47  | 
    \<langle>factorial a b, Mem(a:=3)\<rangle> \<longrightarrow>\<^sub>c Mem(b:=6, a:=0)"
  | 
| 
 | 
    48  | 
  by (simp add: factorial_def)
  | 
| 
12431
 | 
    49  | 
  | 
| 
 | 
    50  | 
text {* the same in single step mode: *}
 | 
| 
 | 
    51  | 
lemmas [simp del] = evalc_cases
  | 
| 
 | 
    52  | 
lemma  "a~=b \<Longrightarrow> \<langle>factorial a b, Mem(a:=3)\<rangle> \<longrightarrow>\<^sub>c Mem(b:=6, a:=0)"
  | 
| 
 | 
    53  | 
apply (unfold factorial_def)
  | 
| 
 | 
    54  | 
apply (frule not_sym)
  | 
| 
 | 
    55  | 
apply (rule evalc.intros)
  | 
| 
 | 
    56  | 
apply  (rule evalc.intros)
  | 
| 
 | 
    57  | 
apply simp
  | 
| 
 | 
    58  | 
apply (rule evalc.intros)
  | 
| 
 | 
    59  | 
apply   simp
  | 
| 
 | 
    60  | 
apply  (rule evalc.intros)
  | 
| 
 | 
    61  | 
apply   (rule evalc.intros)
  | 
| 
 | 
    62  | 
apply  simp
  | 
| 
 | 
    63  | 
apply  (rule evalc.intros)
  | 
| 
 | 
    64  | 
apply simp
  | 
| 
 | 
    65  | 
apply (rule evalc.intros)
  | 
| 
 | 
    66  | 
apply   simp
  | 
| 
 | 
    67  | 
apply  (rule evalc.intros)
  | 
| 
 | 
    68  | 
apply   (rule evalc.intros)
  | 
| 
 | 
    69  | 
apply  simp
  | 
| 
 | 
    70  | 
apply  (rule evalc.intros)
  | 
| 
 | 
    71  | 
apply simp
  | 
| 
 | 
    72  | 
apply (rule evalc.intros)
  | 
| 
 | 
    73  | 
apply   simp
  | 
| 
 | 
    74  | 
apply  (rule evalc.intros)
  | 
| 
 | 
    75  | 
apply   (rule evalc.intros)
  | 
| 
 | 
    76  | 
apply  simp
  | 
| 
 | 
    77  | 
apply  (rule evalc.intros)
  | 
| 
 | 
    78  | 
apply simp
  | 
| 
 | 
    79  | 
apply (rule evalc.intros)
  | 
| 
 | 
    80  | 
apply simp
  | 
| 
 | 
    81  | 
done
  | 
| 
18372
 | 
    82  | 
  | 
| 
9243
 | 
    83  | 
end
  |