| 61203 |      1 | (* Author: Tobias Nipkow *)
 | 
|  |      2 | 
 | 
|  |      3 | section {* Unbalanced Tree as Map *}
 | 
|  |      4 | 
 | 
|  |      5 | theory Tree_Map
 | 
|  |      6 | imports
 | 
| 61231 |      7 |   Tree_Set
 | 
| 61203 |      8 |   Map_by_Ordered
 | 
|  |      9 | begin
 | 
|  |     10 | 
 | 
| 61581 |     11 | fun lookup :: "('a::cmp*'b) tree \<Rightarrow> 'a \<Rightarrow> 'b option" where
 | 
| 61203 |     12 | "lookup Leaf x = None" |
 | 
| 61581 |     13 | "lookup (Node l (a,b) r) x =
 | 
|  |     14 |   (case cmp x a of LT \<Rightarrow> lookup l x | GT \<Rightarrow> lookup r x | EQ \<Rightarrow> Some b)"
 | 
| 61203 |     15 | 
 | 
| 61581 |     16 | fun update :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree \<Rightarrow> ('a*'b) tree" where
 | 
| 61534 |     17 | "update x y Leaf = Node Leaf (x,y) Leaf" |
 | 
| 61581 |     18 | "update x y (Node l (a,b) r) = (case cmp x a of
 | 
|  |     19 |    LT \<Rightarrow> Node (update x y l) (a,b) r |
 | 
|  |     20 |    EQ \<Rightarrow> Node l (x,y) r |
 | 
|  |     21 |    GT \<Rightarrow> Node l (a,b) (update x y r))"
 | 
| 61203 |     22 | 
 | 
| 61581 |     23 | fun delete :: "'a::cmp \<Rightarrow> ('a*'b) tree \<Rightarrow> ('a*'b) tree" where
 | 
| 61534 |     24 | "delete x Leaf = Leaf" |
 | 
| 61581 |     25 | "delete x (Node l (a,b) r) = (case cmp x a of
 | 
|  |     26 |   LT \<Rightarrow> Node (delete x l) (a,b) r |
 | 
|  |     27 |   GT \<Rightarrow> Node l (a,b) (delete x r) |
 | 
|  |     28 |   EQ \<Rightarrow> if r = Leaf then l else let (ab',r') = del_min r in Node l ab' r')"
 | 
| 61203 |     29 | 
 | 
|  |     30 | 
 | 
|  |     31 | subsection "Functional Correctness Proofs"
 | 
|  |     32 | 
 | 
| 61224 |     33 | lemma lookup_eq:
 | 
|  |     34 |   "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
 | 
| 61231 |     35 | by (induction t) (auto simp: map_of_simps split: option.split)
 | 
| 61203 |     36 | 
 | 
|  |     37 | 
 | 
|  |     38 | lemma inorder_update:
 | 
|  |     39 |   "sorted1(inorder t) \<Longrightarrow> inorder(update a b t) = upd_list a b (inorder t)"
 | 
| 61224 |     40 | by(induction t) (auto simp: upd_list_simps)
 | 
| 61203 |     41 | 
 | 
|  |     42 | 
 | 
|  |     43 | lemma del_minD:
 | 
|  |     44 |   "del_min t = (x,t') \<Longrightarrow> t \<noteq> Leaf \<Longrightarrow> sorted1(inorder t) \<Longrightarrow>
 | 
|  |     45 |    x # inorder t' = inorder t"
 | 
|  |     46 | by(induction t arbitrary: t' rule: del_min.induct)
 | 
| 61231 |     47 |   (auto simp: del_list_simps split: prod.splits)
 | 
| 61203 |     48 | 
 | 
|  |     49 | lemma inorder_delete:
 | 
|  |     50 |   "sorted1(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)"
 | 
| 61231 |     51 | by(induction t) (auto simp: del_list_simps del_minD split: prod.splits)
 | 
| 61203 |     52 | 
 | 
|  |     53 | interpretation Map_by_Ordered
 | 
|  |     54 | where empty = Leaf and lookup = lookup and update = update and delete = delete
 | 
|  |     55 | and inorder = inorder and wf = "\<lambda>_. True"
 | 
|  |     56 | proof (standard, goal_cases)
 | 
|  |     57 |   case 1 show ?case by simp
 | 
|  |     58 | next
 | 
|  |     59 |   case 2 thus ?case by(simp add: lookup_eq)
 | 
|  |     60 | next
 | 
|  |     61 |   case 3 thus ?case by(simp add: inorder_update)
 | 
|  |     62 | next
 | 
|  |     63 |   case 4 thus ?case by(simp add: inorder_delete)
 | 
|  |     64 | qed (rule TrueI)+
 | 
|  |     65 | 
 | 
|  |     66 | end
 |