| author | wenzelm | 
| Tue, 30 Dec 2008 21:48:07 +0100 | |
| changeset 29260 | 010b4dd637fe | 
| parent 27651 | 16a26996c30e | 
| child 29667 | 53103fc8ffa3 | 
| permissions | -rw-r--r-- | 
| 13936 | 1 | (* | 
| 2 | Title: Univariate Polynomials | |
| 3 | Id: $Id$ | |
| 4 | Author: Clemens Ballarin, started 9 December 1996 | |
| 5 | Copyright: Clemens Ballarin | |
| 6 | *) | |
| 7 | ||
| 8 | header {* Univariate Polynomials *}
 | |
| 9 | ||
| 15481 | 10 | theory UnivPoly2 | 
| 11 | imports "../abstract/Abstract" | |
| 12 | begin | |
| 13936 | 13 | |
| 16640 
03bdf544a552
Removed setsubgoaler hack (thanks to strong_setsum_cong).
 berghofe parents: 
16052diff
changeset | 14 | (* With this variant of setsum_cong, assumptions | 
| 13936 | 15 |    like i:{m..n} get simplified (to m <= i & i <= n). *)
 | 
| 16 | ||
| 16640 
03bdf544a552
Removed setsubgoaler hack (thanks to strong_setsum_cong).
 berghofe parents: 
16052diff
changeset | 17 | declare strong_setsum_cong [cong] | 
| 13936 | 18 | |
| 19 | section {* Definition of type up *}
 | |
| 20 | ||
| 21423 | 21 | definition | 
| 22 | bound :: "[nat, nat => 'a::zero] => bool" where | |
| 23 | "bound n f = (ALL i. n < i --> f i = 0)" | |
| 13936 | 24 | |
| 25 | lemma boundI [intro!]: "[| !! m. n < m ==> f m = 0 |] ==> bound n f" | |
| 21423 | 26 | unfolding bound_def by blast | 
| 13936 | 27 | |
| 28 | lemma boundE [elim?]: "[| bound n f; (!! m. n < m ==> f m = 0) ==> P |] ==> P" | |
| 21423 | 29 | unfolding bound_def by blast | 
| 13936 | 30 | |
| 31 | lemma boundD [dest]: "[| bound n f; n < m |] ==> f m = 0" | |
| 21423 | 32 | unfolding bound_def by blast | 
| 13936 | 33 | |
| 34 | lemma bound_below: | |
| 35 | assumes bound: "bound m f" and nonzero: "f n ~= 0" shows "n <= m" | |
| 36 | proof (rule classical) | |
| 37 | assume "~ ?thesis" | |
| 38 | then have "m < n" by arith | |
| 39 | with bound have "f n = 0" .. | |
| 40 | with nonzero show ?thesis by contradiction | |
| 41 | qed | |
| 42 | ||
| 43 | typedef (UP) | |
| 21423 | 44 |     ('a) up = "{f :: nat => 'a::zero. EX n. bound n f}"
 | 
| 45 | by (rule+) (* Question: what does trace_rule show??? *) | |
| 46 | ||
| 13936 | 47 | |
| 48 | section {* Constants *}
 | |
| 49 | ||
| 21423 | 50 | definition | 
| 51 |   coeff :: "['a up, nat] => ('a::zero)" where
 | |
| 52 | "coeff p n = Rep_UP p n" | |
| 13936 | 53 | |
| 21423 | 54 | definition | 
| 55 |   monom :: "['a::zero, nat] => 'a up"  ("(3_*X^/_)" [71, 71] 70) where
 | |
| 56 | "monom a n = Abs_UP (%i. if i=n then a else 0)" | |
| 57 | ||
| 58 | definition | |
| 59 |   smult :: "['a::{zero, times}, 'a up] => 'a up"  (infixl "*s" 70) where
 | |
| 60 | "a *s p = Abs_UP (%i. a * Rep_UP p i)" | |
| 13936 | 61 | |
| 62 | lemma coeff_bound_ex: "EX n. bound n (coeff p)" | |
| 63 | proof - | |
| 64 | have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) | |
| 65 | then obtain n where "bound n (coeff p)" by (unfold UP_def) fast | |
| 66 | then show ?thesis .. | |
| 67 | qed | |
| 68 | ||
| 69 | lemma bound_coeff_obtain: | |
| 70 | assumes prem: "(!!n. bound n (coeff p) ==> P)" shows "P" | |
| 71 | proof - | |
| 72 | have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) | |
| 73 | then obtain n where "bound n (coeff p)" by (unfold UP_def) fast | |
| 74 | with prem show P . | |
| 75 | qed | |
| 76 | ||
| 21423 | 77 | |
| 13936 | 78 | text {* Ring operations *}
 | 
| 79 | ||
| 25762 | 80 | instantiation up :: (zero) zero | 
| 81 | begin | |
| 82 | ||
| 83 | definition | |
| 84 | up_zero_def: "0 = monom 0 0" | |
| 85 | ||
| 86 | instance .. | |
| 87 | ||
| 88 | end | |
| 89 | ||
| 90 | instantiation up :: ("{one, zero}") one
 | |
| 91 | begin | |
| 92 | ||
| 93 | definition | |
| 94 | up_one_def: "1 = monom 1 0" | |
| 95 | ||
| 96 | instance .. | |
| 97 | ||
| 98 | end | |
| 99 | ||
| 100 | instantiation up :: ("{plus, zero}") plus
 | |
| 101 | begin | |
| 102 | ||
| 103 | definition | |
| 104 | up_add_def: "p + q = Abs_UP (%n. Rep_UP p n + Rep_UP q n)" | |
| 105 | ||
| 106 | instance .. | |
| 13936 | 107 | |
| 25762 | 108 | end | 
| 109 | ||
| 110 | instantiation up :: ("{one, times, uminus, zero}") uminus
 | |
| 111 | begin | |
| 112 | ||
| 113 | definition | |
| 114 | (* note: - 1 is different from -1; latter is of class number *) | |
| 115 | up_uminus_def:"- p = (- 1) *s p" | |
| 116 | (* easier to use than "Abs_UP (%i. - Rep_UP p i)" *) | |
| 117 | ||
| 118 | instance .. | |
| 119 | ||
| 120 | end | |
| 121 | ||
| 122 | instantiation up :: ("{one, plus, times, minus, uminus, zero}") minus
 | |
| 123 | begin | |
| 124 | ||
| 125 | definition | |
| 126 | up_minus_def: "(a :: 'a up) - b = a + (-b)" | |
| 127 | ||
| 128 | instance .. | |
| 129 | ||
| 130 | end | |
| 131 | ||
| 132 | instantiation up :: ("{times, comm_monoid_add}") times
 | |
| 133 | begin | |
| 134 | ||
| 135 | definition | |
| 136 | up_mult_def: "p * q = Abs_UP (%n::nat. setsum | |
| 13936 | 137 | 		     (%i. Rep_UP p i * Rep_UP q (n-i)) {..n})"
 | 
| 25762 | 138 | |
| 139 | instance .. | |
| 140 | ||
| 141 | end | |
| 142 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 143 | instance up :: ("{times, comm_monoid_add}") Ring_and_Field.dvd ..
 | 
| 26563 | 144 | |
| 145 | instantiation up :: ("{times, one, comm_monoid_add, uminus, minus}") inverse
 | |
| 25762 | 146 | begin | 
| 147 | ||
| 148 | definition | |
| 149 | up_inverse_def: "inverse (a :: 'a up) = (if a dvd 1 then | |
| 150 | THE x. a * x = 1 else 0)" | |
| 13936 | 151 | |
| 25762 | 152 | definition | 
| 153 | up_divide_def: "(a :: 'a up) / b = a * inverse b" | |
| 154 | ||
| 155 | instance .. | |
| 156 | ||
| 157 | end | |
| 13936 | 158 | |
| 25762 | 159 | instantiation up :: ("{times, one, comm_monoid_add}") power
 | 
| 160 | begin | |
| 161 | ||
| 162 | primrec power_up where | |
| 163 | "(a \<Colon> 'a up) ^ 0 = 1" | |
| 164 | | "(a \<Colon> 'a up) ^ Suc n = a ^ n * a" | |
| 165 | ||
| 166 | instance .. | |
| 167 | ||
| 168 | end | |
| 21423 | 169 | |
| 13936 | 170 | subsection {* Effect of operations on coefficients *}
 | 
| 171 | ||
| 172 | lemma coeff_monom [simp]: "coeff (monom a m) n = (if m=n then a else 0)" | |
| 173 | proof - | |
| 174 | have "(%n. if n = m then a else 0) : UP" | |
| 175 | using UP_def by force | |
| 176 | from this show ?thesis | |
| 177 | by (simp add: coeff_def monom_def Abs_UP_inverse Rep_UP) | |
| 178 | qed | |
| 179 | ||
| 180 | lemma coeff_zero [simp]: "coeff 0 n = 0" | |
| 181 | proof (unfold up_zero_def) | |
| 182 | qed simp | |
| 183 | ||
| 184 | lemma coeff_one [simp]: "coeff 1 n = (if n=0 then 1 else 0)" | |
| 185 | proof (unfold up_one_def) | |
| 186 | qed simp | |
| 187 | ||
| 188 | (* term order | |
| 189 | lemma coeff_smult [simp]: "coeff (a *s p) n = (a::'a::ring) * coeff p n" | |
| 190 | proof - | |
| 191 | have "!!f. f : UP ==> (%n. a * f n) : UP" | |
| 192 | by (unfold UP_def) (force simp add: ring_simps) | |
| 193 | *) (* this force step is slow *) | |
| 194 | (* then show ?thesis | |
| 195 | apply (simp add: coeff_def smult_def Abs_UP_inverse Rep_UP) | |
| 196 | qed | |
| 197 | *) | |
| 198 | lemma coeff_smult [simp]: "coeff (a *s p) n = (a::'a::ring) * coeff p n" | |
| 199 | proof - | |
| 200 | have "Rep_UP p : UP ==> (%n. a * Rep_UP p n) : UP" | |
| 201 | by (unfold UP_def) (force simp add: ring_simps) | |
| 202 | (* this force step is slow *) | |
| 203 | then show ?thesis | |
| 204 | by (simp add: coeff_def smult_def Abs_UP_inverse Rep_UP) | |
| 205 | qed | |
| 206 | ||
| 207 | lemma coeff_add [simp]: "coeff (p+q) n = (coeff p n + coeff q n::'a::ring)" | |
| 208 | proof - | |
| 209 |   {
 | |
| 210 | fix f g | |
| 211 | assume fup: "(f::nat=>'a::ring) : UP" and gup: "(g::nat=>'a::ring) : UP" | |
| 212 | have "(%i. f i + g i) : UP" | |
| 213 | proof - | |
| 214 | from fup obtain n where boundn: "bound n f" | |
| 215 | by (unfold UP_def) fast | |
| 216 | from gup obtain m where boundm: "bound m g" | |
| 217 | by (unfold UP_def) fast | |
| 218 | have "bound (max n m) (%i. (f i + g i))" | |
| 219 | proof | |
| 220 | fix i | |
| 221 | assume "max n m < i" | |
| 222 | with boundn and boundm show "f i + g i = 0" | |
| 223 | by (fastsimp simp add: ring_simps) | |
| 224 | qed | |
| 225 | then show "(%i. (f i + g i)) : UP" | |
| 226 | by (unfold UP_def) fast | |
| 227 | qed | |
| 228 | } | |
| 229 | then show ?thesis | |
| 230 | by (simp add: coeff_def up_add_def Abs_UP_inverse Rep_UP) | |
| 231 | qed | |
| 232 | ||
| 233 | lemma coeff_mult [simp]: | |
| 234 |   "coeff (p * q) n = (setsum (%i. coeff p i * coeff q (n-i)) {..n}::'a::ring)"
 | |
| 235 | proof - | |
| 236 |   {
 | |
| 237 | fix f g | |
| 238 | assume fup: "(f::nat=>'a::ring) : UP" and gup: "(g::nat=>'a::ring) : UP" | |
| 239 |     have "(%n. setsum (%i. f i * g (n-i)) {..n}) : UP"
 | |
| 240 | proof - | |
| 241 | from fup obtain n where "bound n f" | |
| 242 | by (unfold UP_def) fast | |
| 243 | from gup obtain m where "bound m g" | |
| 244 | by (unfold UP_def) fast | |
| 245 |       have "bound (n + m) (%n. setsum (%i. f i * g (n-i)) {..n})"
 | |
| 246 | proof | |
| 247 | fix k | |
| 248 | assume bound: "n + m < k" | |
| 249 | 	{
 | |
| 250 | fix i | |
| 251 | have "f i * g (k-i) = 0" | |
| 252 | proof cases | |
| 253 | assume "n < i" | |
| 22931 | 254 | with `bound n f` show ?thesis by (auto simp add: ring_simps) | 
| 13936 | 255 | next | 
| 256 | assume "~ (n < i)" | |
| 257 | with bound have "m < k-i" by arith | |
| 22931 | 258 | with `bound m g` show ?thesis by (auto simp add: ring_simps) | 
| 13936 | 259 | qed | 
| 260 | } | |
| 261 | 	then show "setsum (%i. f i * g (k-i)) {..k} = 0"
 | |
| 262 | by (simp add: ring_simps) | |
| 263 | qed | |
| 264 |       then show "(%n. setsum (%i. f i * g (n-i)) {..n}) : UP"
 | |
| 265 | by (unfold UP_def) fast | |
| 266 | qed | |
| 267 | } | |
| 268 | then show ?thesis | |
| 269 | by (simp add: coeff_def up_mult_def Abs_UP_inverse Rep_UP) | |
| 270 | qed | |
| 271 | ||
| 272 | lemma coeff_uminus [simp]: "coeff (-p) n = (-coeff p n::'a::ring)" | |
| 273 | by (unfold up_uminus_def) (simp add: ring_simps) | |
| 274 | ||
| 275 | (* Other lemmas *) | |
| 276 | ||
| 277 | lemma up_eqI: assumes prem: "(!! n. coeff p n = coeff q n)" shows "p = q" | |
| 278 | proof - | |
| 279 | have "p = Abs_UP (%u. Rep_UP p u)" by (simp add: Rep_UP_inverse) | |
| 280 | also from prem have "... = Abs_UP (Rep_UP q)" by (simp only: coeff_def) | |
| 281 | also have "... = q" by (simp add: Rep_UP_inverse) | |
| 282 | finally show ?thesis . | |
| 283 | qed | |
| 284 | ||
| 26480 | 285 | (* ML {* Addsimprocs [ring_simproc] *} *)
 | 
| 13936 | 286 | |
| 287 | instance up :: (ring) ring | |
| 288 | proof | |
| 289 | fix p q r :: "'a::ring up" | |
| 290 | show "(p + q) + r = p + (q + r)" | |
| 291 | by (rule up_eqI) simp | |
| 292 | show "0 + p = p" | |
| 293 | by (rule up_eqI) simp | |
| 294 | show "(-p) + p = 0" | |
| 295 | by (rule up_eqI) simp | |
| 296 | show "p + q = q + p" | |
| 297 | by (rule up_eqI) simp | |
| 298 | show "(p * q) * r = p * (q * r)" | |
| 299 | proof (rule up_eqI) | |
| 300 | fix n | |
| 301 |     {
 | |
| 302 | fix k and a b c :: "nat=>'a::ring" | |
| 303 | have "k <= n ==> | |
| 304 | 	setsum (%j. setsum (%i. a i * b (j-i)) {..j} * c (n-j)) {..k} = 
 | |
| 305 | 	setsum (%j. a j * setsum  (%i. b i * c (n-j-i)) {..k-j}) {..k}"
 | |
| 306 | (is "_ ==> ?eq k") | |
| 307 | proof (induct k) | |
| 308 | case 0 show ?case by simp | |
| 309 | next | |
| 310 | case (Suc k) | |
| 311 | then have "k <= n" by arith | |
| 312 | then have "?eq k" by (rule Suc) | |
| 313 | then show ?case | |
| 314 | by (simp add: Suc_diff_le natsum_ldistr) | |
| 315 | qed | |
| 316 | } | |
| 317 | then show "coeff ((p * q) * r) n = coeff (p * (q * r)) n" | |
| 318 | by simp | |
| 319 | qed | |
| 320 | show "1 * p = p" | |
| 321 | proof (rule up_eqI) | |
| 322 | fix n | |
| 323 | show "coeff (1 * p) n = coeff p n" | |
| 324 | proof (cases n) | |
| 325 | case 0 then show ?thesis by simp | |
| 326 | next | |
| 16052 | 327 | case Suc then show ?thesis by (simp del: setsum_atMost_Suc add: natsum_Suc2) | 
| 13936 | 328 | qed | 
| 329 | qed | |
| 330 | show "(p + q) * r = p * r + q * r" | |
| 331 | by (rule up_eqI) simp | |
| 332 | show "p * q = q * p" | |
| 333 | proof (rule up_eqI) | |
| 334 | fix n | |
| 335 |     {
 | |
| 336 | fix k | |
| 337 | fix a b :: "nat=>'a::ring" | |
| 338 | have "k <= n ==> | |
| 339 | 	setsum (%i. a i * b (n-i)) {..k} =
 | |
| 340 | 	setsum (%i. a (k-i) * b (i+n-k)) {..k}"
 | |
| 341 | (is "_ ==> ?eq k") | |
| 342 | proof (induct k) | |
| 343 | case 0 show ?case by simp | |
| 344 | next | |
| 345 | case (Suc k) then show ?case by (subst natsum_Suc2) simp | |
| 346 | qed | |
| 347 | } | |
| 348 | then show "coeff (p * q) n = coeff (q * p) n" | |
| 349 | by simp | |
| 350 | qed | |
| 351 | ||
| 352 | show "p - q = p + (-q)" | |
| 353 | by (simp add: up_minus_def) | |
| 354 | show "inverse p = (if p dvd 1 then THE x. p*x = 1 else 0)" | |
| 355 | by (simp add: up_inverse_def) | |
| 356 | show "p / q = p * inverse q" | |
| 357 | by (simp add: up_divide_def) | |
| 15596 | 358 | fix n | 
| 27540 | 359 | show "p ^ 0 = 1" by simp | 
| 360 | show "p ^ Suc n = p ^ n * p" by simp | |
| 361 | qed | |
| 13936 | 362 | |
| 363 | (* Further properties of monom *) | |
| 364 | ||
| 365 | lemma monom_zero [simp]: | |
| 366 | "monom 0 n = 0" | |
| 367 | by (simp add: monom_def up_zero_def) | |
| 368 | (* term order: application of coeff_mult goes wrong: rule not symmetric | |
| 369 | lemma monom_mult_is_smult: | |
| 370 | "monom (a::'a::ring) 0 * p = a *s p" | |
| 371 | proof (rule up_eqI) | |
| 372 | fix k | |
| 373 | show "coeff (monom a 0 * p) k = coeff (a *s p) k" | |
| 374 | proof (cases k) | |
| 375 | case 0 then show ?thesis by simp | |
| 376 | next | |
| 377 | case Suc then show ?thesis by simp | |
| 378 | qed | |
| 379 | qed | |
| 380 | *) | |
| 26480 | 381 | ML {* Delsimprocs [ring_simproc] *}
 | 
| 13936 | 382 | |
| 383 | lemma monom_mult_is_smult: | |
| 384 | "monom (a::'a::ring) 0 * p = a *s p" | |
| 385 | proof (rule up_eqI) | |
| 386 | fix k | |
| 387 | have "coeff (p * monom a 0) k = coeff (a *s p) k" | |
| 388 | proof (cases k) | |
| 389 | case 0 then show ?thesis by simp ring | |
| 390 | next | |
| 391 | case Suc then show ?thesis by (simp add: ring_simps) ring | |
| 392 | qed | |
| 393 | then show "coeff (monom a 0 * p) k = coeff (a *s p) k" by ring | |
| 394 | qed | |
| 395 | ||
| 26480 | 396 | ML {* Addsimprocs [ring_simproc] *}
 | 
| 13936 | 397 | |
| 398 | lemma monom_add [simp]: | |
| 399 | "monom (a + b) n = monom (a::'a::ring) n + monom b n" | |
| 400 | by (rule up_eqI) simp | |
| 401 | ||
| 402 | lemma monom_mult_smult: | |
| 403 | "monom (a * b) n = a *s monom (b::'a::ring) n" | |
| 404 | by (rule up_eqI) simp | |
| 405 | ||
| 406 | lemma monom_uminus [simp]: | |
| 407 | "monom (-a) n = - monom (a::'a::ring) n" | |
| 408 | by (rule up_eqI) simp | |
| 409 | ||
| 410 | lemma monom_one [simp]: | |
| 411 | "monom 1 0 = 1" | |
| 412 | by (simp add: up_one_def) | |
| 413 | ||
| 414 | lemma monom_inj: | |
| 415 | "(monom a n = monom b n) = (a = b)" | |
| 416 | proof | |
| 417 | assume "monom a n = monom b n" | |
| 418 | then have "coeff (monom a n) n = coeff (monom b n) n" by simp | |
| 419 | then show "a = b" by simp | |
| 420 | next | |
| 421 | assume "a = b" then show "monom a n = monom b n" by simp | |
| 422 | qed | |
| 423 | ||
| 424 | (* Properties of *s: | |
| 425 | Polynomials form a module *) | |
| 426 | ||
| 427 | lemma smult_l_distr: | |
| 428 | "(a + b::'a::ring) *s p = a *s p + b *s p" | |
| 429 | by (rule up_eqI) simp | |
| 430 | ||
| 431 | lemma smult_r_distr: | |
| 432 | "(a::'a::ring) *s (p + q) = a *s p + a *s q" | |
| 433 | by (rule up_eqI) simp | |
| 434 | ||
| 435 | lemma smult_assoc1: | |
| 436 | "(a * b::'a::ring) *s p = a *s (b *s p)" | |
| 437 | by (rule up_eqI) simp | |
| 438 | ||
| 439 | lemma smult_one [simp]: | |
| 440 | "(1::'a::ring) *s p = p" | |
| 441 | by (rule up_eqI) simp | |
| 442 | ||
| 443 | (* Polynomials form an algebra *) | |
| 444 | ||
| 26480 | 445 | ML {* Delsimprocs [ring_simproc] *}
 | 
| 13936 | 446 | |
| 447 | lemma smult_assoc2: | |
| 448 | "(a *s p) * q = (a::'a::ring) *s (p * q)" | |
| 449 | by (rule up_eqI) (simp add: natsum_rdistr m_assoc) | |
| 450 | (* Simproc fails. *) | |
| 451 | ||
| 26480 | 452 | ML {* Addsimprocs [ring_simproc] *}
 | 
| 13936 | 453 | |
| 454 | (* the following can be derived from the above ones, | |
| 455 | for generality reasons, it is therefore done *) | |
| 456 | ||
| 457 | lemma smult_l_null [simp]: | |
| 458 | "(0::'a::ring) *s p = 0" | |
| 459 | proof - | |
| 460 | fix a | |
| 461 | have "0 *s p = (0 *s p + a *s p) + - (a *s p)" by simp | |
| 462 | also have "... = (0 + a) *s p + - (a *s p)" by (simp only: smult_l_distr) | |
| 463 | also have "... = 0" by simp | |
| 464 | finally show ?thesis . | |
| 465 | qed | |
| 466 | ||
| 467 | lemma smult_r_null [simp]: | |
| 468 | "(a::'a::ring) *s 0 = 0"; | |
| 469 | proof - | |
| 470 | fix p | |
| 471 | have "a *s 0 = (a *s 0 + a *s p) + - (a *s p)" by simp | |
| 472 | also have "... = a *s (0 + p) + - (a *s p)" by (simp only: smult_r_distr) | |
| 473 | also have "... = 0" by simp | |
| 474 | finally show ?thesis . | |
| 475 | qed | |
| 476 | ||
| 477 | lemma smult_l_minus: | |
| 478 | "(-a::'a::ring) *s p = - (a *s p)" | |
| 479 | proof - | |
| 480 | have "(-a) *s p = (-a *s p + a *s p) + -(a *s p)" by simp | |
| 481 | also have "... = (-a + a) *s p + -(a *s p)" by (simp only: smult_l_distr) | |
| 482 | also have "... = -(a *s p)" by simp | |
| 483 | finally show ?thesis . | |
| 484 | qed | |
| 485 | ||
| 486 | lemma smult_r_minus: | |
| 487 | "(a::'a::ring) *s (-p) = - (a *s p)" | |
| 488 | proof - | |
| 489 | have "a *s (-p) = (a *s -p + a *s p) + -(a *s p)" by simp | |
| 490 | also have "... = a *s (-p + p) + -(a *s p)" by (simp only: smult_r_distr) | |
| 491 | also have "... = -(a *s p)" by simp | |
| 492 | finally show ?thesis . | |
| 493 | qed | |
| 494 | ||
| 495 | section {* The degree function *}
 | |
| 496 | ||
| 21423 | 497 | definition | 
| 498 |   deg :: "('a::zero) up => nat" where
 | |
| 499 | "deg p = (LEAST n. bound n (coeff p))" | |
| 13936 | 500 | |
| 501 | lemma deg_aboveI: | |
| 502 | "(!!m. n < m ==> coeff p m = 0) ==> deg p <= n" | |
| 503 | by (unfold deg_def) (fast intro: Least_le) | |
| 504 | ||
| 505 | lemma deg_aboveD: | |
| 23350 | 506 | assumes "deg p < m" shows "coeff p m = 0" | 
| 13936 | 507 | proof - | 
| 508 | obtain n where "bound n (coeff p)" by (rule bound_coeff_obtain) | |
| 509 | then have "bound (deg p) (coeff p)" by (unfold deg_def, rule LeastI) | |
| 23350 | 510 | then show "coeff p m = 0" using `deg p < m` by (rule boundD) | 
| 13936 | 511 | qed | 
| 512 | ||
| 513 | lemma deg_belowI: | |
| 514 | assumes prem: "n ~= 0 ==> coeff p n ~= 0" shows "n <= deg p" | |
| 515 | (* logically, this is a slightly stronger version of deg_aboveD *) | |
| 516 | proof (cases "n=0") | |
| 517 | case True then show ?thesis by simp | |
| 518 | next | |
| 519 | case False then have "coeff p n ~= 0" by (rule prem) | |
| 520 | then have "~ deg p < n" by (fast dest: deg_aboveD) | |
| 521 | then show ?thesis by arith | |
| 522 | qed | |
| 523 | ||
| 524 | lemma lcoeff_nonzero_deg: | |
| 525 | assumes deg: "deg p ~= 0" shows "coeff p (deg p) ~= 0" | |
| 526 | proof - | |
| 527 | obtain m where "deg p <= m" and m_coeff: "coeff p m ~= 0" | |
| 528 | proof - | |
| 529 | have minus: "!!(n::nat) m. n ~= 0 ==> (n - Suc 0 < m) = (n <= m)" | |
| 530 | by arith (* make public?, why does proof not work with "1" *) | |
| 531 | from deg have "deg p - 1 < (LEAST n. bound n (coeff p))" | |
| 532 | by (unfold deg_def) arith | |
| 533 | then have "~ bound (deg p - 1) (coeff p)" by (rule not_less_Least) | |
| 534 | then have "EX m. deg p - 1 < m & coeff p m ~= 0" | |
| 535 | by (unfold bound_def) fast | |
| 536 | then have "EX m. deg p <= m & coeff p m ~= 0" by (simp add: deg minus) | |
| 23350 | 537 | then show ?thesis by (auto intro: that) | 
| 13936 | 538 | qed | 
| 539 | with deg_belowI have "deg p = m" by fastsimp | |
| 540 | with m_coeff show ?thesis by simp | |
| 541 | qed | |
| 542 | ||
| 543 | lemma lcoeff_nonzero_nonzero: | |
| 544 | assumes deg: "deg p = 0" and nonzero: "p ~= 0" shows "coeff p 0 ~= 0" | |
| 545 | proof - | |
| 546 | have "EX m. coeff p m ~= 0" | |
| 547 | proof (rule classical) | |
| 548 | assume "~ ?thesis" | |
| 549 | then have "p = 0" by (auto intro: up_eqI) | |
| 550 | with nonzero show ?thesis by contradiction | |
| 551 | qed | |
| 552 | then obtain m where coeff: "coeff p m ~= 0" .. | |
| 553 | then have "m <= deg p" by (rule deg_belowI) | |
| 554 | then have "m = 0" by (simp add: deg) | |
| 555 | with coeff show ?thesis by simp | |
| 556 | qed | |
| 557 | ||
| 558 | lemma lcoeff_nonzero: | |
| 559 | "p ~= 0 ==> coeff p (deg p) ~= 0" | |
| 560 | proof (cases "deg p = 0") | |
| 561 | case True | |
| 562 | assume "p ~= 0" | |
| 563 | with True show ?thesis by (simp add: lcoeff_nonzero_nonzero) | |
| 564 | next | |
| 565 | case False | |
| 566 | assume "p ~= 0" | |
| 567 | with False show ?thesis by (simp add: lcoeff_nonzero_deg) | |
| 568 | qed | |
| 569 | ||
| 570 | lemma deg_eqI: | |
| 571 | "[| !!m. n < m ==> coeff p m = 0; | |
| 572 | !!n. n ~= 0 ==> coeff p n ~= 0|] ==> deg p = n" | |
| 573 | by (fast intro: le_anti_sym deg_aboveI deg_belowI) | |
| 574 | ||
| 575 | (* Degree and polynomial operations *) | |
| 576 | ||
| 577 | lemma deg_add [simp]: | |
| 578 | "deg ((p::'a::ring up) + q) <= max (deg p) (deg q)" | |
| 579 | proof (cases "deg p <= deg q") | |
| 580 | case True show ?thesis by (rule deg_aboveI) (simp add: True deg_aboveD) | |
| 581 | next | |
| 582 | case False show ?thesis by (rule deg_aboveI) (simp add: False deg_aboveD) | |
| 583 | qed | |
| 584 | ||
| 585 | lemma deg_monom_ring: | |
| 586 | "deg (monom a n::'a::ring up) <= n" | |
| 587 | by (rule deg_aboveI) simp | |
| 588 | ||
| 589 | lemma deg_monom [simp]: | |
| 590 | "a ~= 0 ==> deg (monom a n::'a::ring up) = n" | |
| 591 | by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI) | |
| 592 | ||
| 593 | lemma deg_const [simp]: | |
| 594 | "deg (monom (a::'a::ring) 0) = 0" | |
| 595 | proof (rule le_anti_sym) | |
| 596 | show "deg (monom a 0) <= 0" by (rule deg_aboveI) simp | |
| 597 | next | |
| 598 | show "0 <= deg (monom a 0)" by (rule deg_belowI) simp | |
| 599 | qed | |
| 600 | ||
| 601 | lemma deg_zero [simp]: | |
| 602 | "deg 0 = 0" | |
| 603 | proof (rule le_anti_sym) | |
| 604 | show "deg 0 <= 0" by (rule deg_aboveI) simp | |
| 605 | next | |
| 606 | show "0 <= deg 0" by (rule deg_belowI) simp | |
| 607 | qed | |
| 608 | ||
| 609 | lemma deg_one [simp]: | |
| 610 | "deg 1 = 0" | |
| 611 | proof (rule le_anti_sym) | |
| 612 | show "deg 1 <= 0" by (rule deg_aboveI) simp | |
| 613 | next | |
| 614 | show "0 <= deg 1" by (rule deg_belowI) simp | |
| 615 | qed | |
| 616 | ||
| 617 | lemma uminus_monom: | |
| 618 | "!!a::'a::ring. (-a = 0) = (a = 0)" | |
| 619 | proof | |
| 620 | fix a::"'a::ring" | |
| 621 | assume "a = 0" | |
| 622 | then show "-a = 0" by simp | |
| 623 | next | |
| 624 | fix a::"'a::ring" | |
| 625 | assume "- a = 0" | |
| 626 | then have "-(- a) = 0" by simp | |
| 627 | then show "a = 0" by simp | |
| 628 | qed | |
| 629 | ||
| 630 | lemma deg_uminus [simp]: | |
| 631 |   "deg (-p::('a::ring) up) = deg p"
 | |
| 632 | proof (rule le_anti_sym) | |
| 633 | show "deg (- p) <= deg p" by (simp add: deg_aboveI deg_aboveD) | |
| 634 | next | |
| 635 | show "deg p <= deg (- p)" | |
| 636 | by (simp add: deg_belowI lcoeff_nonzero_deg uminus_monom) | |
| 637 | qed | |
| 638 | ||
| 639 | lemma deg_smult_ring: | |
| 640 | "deg ((a::'a::ring) *s p) <= (if a = 0 then 0 else deg p)" | |
| 641 | proof (cases "a = 0") | |
| 642 | qed (simp add: deg_aboveI deg_aboveD)+ | |
| 643 | ||
| 644 | lemma deg_smult [simp]: | |
| 645 | "deg ((a::'a::domain) *s p) = (if a = 0 then 0 else deg p)" | |
| 646 | proof (rule le_anti_sym) | |
| 647 | show "deg (a *s p) <= (if a = 0 then 0 else deg p)" by (rule deg_smult_ring) | |
| 648 | next | |
| 649 | show "(if a = 0 then 0 else deg p) <= deg (a *s p)" | |
| 650 | proof (cases "a = 0") | |
| 651 | qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff) | |
| 652 | qed | |
| 653 | ||
| 654 | lemma deg_mult_ring: | |
| 655 | "deg (p * q::'a::ring up) <= deg p + deg q" | |
| 656 | proof (rule deg_aboveI) | |
| 657 | fix m | |
| 658 | assume boundm: "deg p + deg q < m" | |
| 659 |   {
 | |
| 660 | fix k i | |
| 661 | assume boundk: "deg p + deg q < k" | |
| 662 | then have "coeff p i * coeff q (k - i) = 0" | |
| 663 | proof (cases "deg p < i") | |
| 664 | case True then show ?thesis by (simp add: deg_aboveD) | |
| 665 | next | |
| 666 | case False with boundk have "deg q < k - i" by arith | |
| 667 | then show ?thesis by (simp add: deg_aboveD) | |
| 668 | qed | |
| 669 | } | |
| 670 | (* This is similar to bound_mult_zero and deg_above_mult_zero in the old | |
| 671 | proofs. *) | |
| 672 | with boundm show "coeff (p * q) m = 0" by simp | |
| 673 | qed | |
| 674 | ||
| 675 | lemma deg_mult [simp]: | |
| 676 | "[| (p::'a::domain up) ~= 0; q ~= 0|] ==> deg (p * q) = deg p + deg q" | |
| 677 | proof (rule le_anti_sym) | |
| 678 | show "deg (p * q) <= deg p + deg q" by (rule deg_mult_ring) | |
| 679 | next | |
| 680 | let ?s = "(%i. coeff p i * coeff q (deg p + deg q - i))" | |
| 681 | assume nz: "p ~= 0" "q ~= 0" | |
| 682 | have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith | |
| 683 | show "deg p + deg q <= deg (p * q)" | |
| 684 | proof (rule deg_belowI, simp) | |
| 685 |     have "setsum ?s {.. deg p + deg q}
 | |
| 15045 | 686 |       = setsum ?s ({..< deg p} Un {deg p .. deg p + deg q})"
 | 
| 13936 | 687 | by (simp only: ivl_disj_un_one) | 
| 688 |     also have "... = setsum ?s {deg p .. deg p + deg q}"
 | |
| 689 | by (simp add: setsum_Un_disjoint ivl_disj_int_one | |
| 690 | setsum_0 deg_aboveD less_add_diff) | |
| 15045 | 691 |     also have "... = setsum ?s ({deg p} Un {deg p <.. deg p + deg q})"
 | 
| 13936 | 692 | by (simp only: ivl_disj_un_singleton) | 
| 693 | also have "... = coeff p (deg p) * coeff q (deg q)" | |
| 694 | by (simp add: setsum_Un_disjoint ivl_disj_int_singleton | |
| 695 | setsum_0 deg_aboveD) | |
| 696 |     finally have "setsum ?s {.. deg p + deg q} 
 | |
| 697 | = coeff p (deg p) * coeff q (deg q)" . | |
| 698 |     with nz show "setsum ?s {.. deg p + deg q} ~= 0"
 | |
| 699 | by (simp add: integral_iff lcoeff_nonzero) | |
| 700 | qed | |
| 701 | qed | |
| 702 | ||
| 703 | lemma coeff_natsum: | |
| 704 | "((coeff (setsum p A) k)::'a::ring) = | |
| 705 | setsum (%i. coeff (p i) k) A" | |
| 706 | proof (cases "finite A") | |
| 707 | case True then show ?thesis by induct auto | |
| 708 | next | |
| 709 | case False then show ?thesis by (simp add: setsum_def) | |
| 710 | qed | |
| 711 | (* Instance of a more general result!!! *) | |
| 712 | ||
| 713 | (* | |
| 714 | lemma coeff_natsum: | |
| 715 |   "((coeff (setsum p {..n::nat}) k)::'a::ring) = 
 | |
| 716 |    setsum (%i. coeff (p i) k) {..n}"
 | |
| 717 | by (induct n) auto | |
| 718 | *) | |
| 719 | ||
| 720 | lemma up_repr: | |
| 721 |   "setsum (%i. monom (coeff p i) i) {..deg (p::'a::ring up)} = p"
 | |
| 722 | proof (rule up_eqI) | |
| 723 | let ?s = "(%i. monom (coeff p i) i)" | |
| 724 | fix k | |
| 725 |   show "coeff (setsum ?s {..deg p}) k = coeff p k"
 | |
| 726 | proof (cases "k <= deg p") | |
| 727 | case True | |
| 728 |     hence "coeff (setsum ?s {..deg p}) k = 
 | |
| 15045 | 729 |           coeff (setsum ?s ({..k} Un {k<..deg p})) k"
 | 
| 13936 | 730 | by (simp only: ivl_disj_un_one) | 
| 731 | also from True | |
| 732 |     have "... = coeff (setsum ?s {..k}) k"
 | |
| 733 | by (simp add: setsum_Un_disjoint ivl_disj_int_one order_less_imp_not_eq2 | |
| 734 | setsum_0 coeff_natsum ) | |
| 735 | also | |
| 15045 | 736 |     have "... = coeff (setsum ?s ({..<k} Un {k})) k"
 | 
| 13936 | 737 | by (simp only: ivl_disj_un_singleton) | 
| 738 | also have "... = coeff p k" | |
| 739 | by (simp add: setsum_Un_disjoint ivl_disj_int_singleton | |
| 740 | setsum_0 coeff_natsum deg_aboveD) | |
| 741 | finally show ?thesis . | |
| 742 | next | |
| 743 | case False | |
| 744 |     hence "coeff (setsum ?s {..deg p}) k = 
 | |
| 15045 | 745 |           coeff (setsum ?s ({..<deg p} Un {deg p})) k"
 | 
| 13936 | 746 | by (simp only: ivl_disj_un_singleton) | 
| 747 | also from False have "... = coeff p k" | |
| 748 | by (simp add: setsum_Un_disjoint ivl_disj_int_singleton | |
| 749 | setsum_0 coeff_natsum deg_aboveD) | |
| 750 | finally show ?thesis . | |
| 751 | qed | |
| 752 | qed | |
| 753 | ||
| 754 | lemma up_repr_le: | |
| 755 |   "deg (p::'a::ring up) <= n ==> setsum (%i. monom (coeff p i) i) {..n} = p"
 | |
| 756 | proof - | |
| 757 | let ?s = "(%i. monom (coeff p i) i)" | |
| 758 | assume "deg p <= n" | |
| 15045 | 759 |   then have "setsum ?s {..n} = setsum ?s ({..deg p} Un {deg p<..n})"
 | 
| 13936 | 760 | by (simp only: ivl_disj_un_one) | 
| 761 |   also have "... = setsum ?s {..deg p}"
 | |
| 762 | by (simp add: setsum_Un_disjoint ivl_disj_int_one | |
| 763 | setsum_0 deg_aboveD) | |
| 764 | also have "... = p" by (rule up_repr) | |
| 765 | finally show ?thesis . | |
| 766 | qed | |
| 767 | ||
| 768 | instance up :: ("domain") "domain"
 | |
| 769 | proof | |
| 770 | show "1 ~= (0::'a up)" | |
| 771 | proof (* notI is applied here *) | |
| 772 | assume "1 = (0::'a up)" | |
| 773 | hence "coeff 1 0 = (coeff 0 0::'a)" by simp | |
| 774 | hence "1 = (0::'a)" by simp | |
| 775 | with one_not_zero show "False" by contradiction | |
| 776 | qed | |
| 777 | next | |
| 778 | fix p q :: "'a::domain up" | |
| 779 | assume pq: "p * q = 0" | |
| 780 | show "p = 0 | q = 0" | |
| 781 | proof (rule classical) | |
| 782 | assume c: "~ (p = 0 | q = 0)" | |
| 783 | then have "deg p + deg q = deg (p * q)" by simp | |
| 784 | also from pq have "... = 0" by simp | |
| 785 | finally have "deg p + deg q = 0" . | |
| 786 | then have f1: "deg p = 0 & deg q = 0" by simp | |
| 787 |     from f1 have "p = setsum (%i. (monom (coeff p i) i)) {..0}"
 | |
| 788 | by (simp only: up_repr_le) | |
| 789 | also have "... = monom (coeff p 0) 0" by simp | |
| 790 | finally have p: "p = monom (coeff p 0) 0" . | |
| 791 |     from f1 have "q = setsum (%i. (monom (coeff q i) i)) {..0}"
 | |
| 792 | by (simp only: up_repr_le) | |
| 793 | also have "... = monom (coeff q 0) 0" by simp | |
| 794 | finally have q: "q = monom (coeff q 0) 0" . | |
| 795 | have "coeff p 0 * coeff q 0 = coeff (p * q) 0" by simp | |
| 796 | also from pq have "... = 0" by simp | |
| 797 | finally have "coeff p 0 * coeff q 0 = 0" . | |
| 798 | then have "coeff p 0 = 0 | coeff q 0 = 0" by (simp only: integral_iff) | |
| 799 | with p q show "p = 0 | q = 0" by fastsimp | |
| 800 | qed | |
| 801 | qed | |
| 802 | ||
| 803 | lemma monom_inj_zero: | |
| 804 | "(monom a n = 0) = (a = 0)" | |
| 805 | proof - | |
| 806 | have "(monom a n = 0) = (monom a n = monom 0 n)" by simp | |
| 807 | also have "... = (a = 0)" by (simp add: monom_inj del: monom_zero) | |
| 808 | finally show ?thesis . | |
| 809 | qed | |
| 810 | (* term order: makes this simpler!!! | |
| 811 | lemma smult_integral: | |
| 812 | "(a::'a::domain) *s p = 0 ==> a = 0 | p = 0" | |
| 813 | by (simp add: monom_mult_is_smult [THEN sym] integral_iff monom_inj_zero) fast | |
| 814 | *) | |
| 815 | lemma smult_integral: | |
| 816 | "(a::'a::domain) *s p = 0 ==> a = 0 | p = 0" | |
| 817 | by (simp add: monom_mult_is_smult [THEN sym] integral_iff monom_inj_zero) | |
| 818 | ||
| 21423 | 819 | |
| 820 | (* Divisibility and degree *) | |
| 821 | ||
| 822 | lemma "!! p::'a::domain up. [| p dvd q; q ~= 0 |] ==> deg p <= deg q" | |
| 823 | apply (unfold dvd_def) | |
| 824 | apply (erule exE) | |
| 825 | apply hypsubst | |
| 826 | apply (case_tac "p = 0") | |
| 827 | apply (case_tac [2] "k = 0") | |
| 828 | apply auto | |
| 829 | done | |
| 830 | ||
| 14590 | 831 | end |