23164
|
1 |
(* Title: HOL/IntArith.thy
|
|
2 |
ID: $Id$
|
|
3 |
Authors: Larry Paulson and Tobias Nipkow
|
|
4 |
*)
|
|
5 |
|
|
6 |
header {* Integer arithmetic *}
|
|
7 |
|
|
8 |
theory IntArith
|
|
9 |
imports Numeral Wellfounded_Relations
|
23263
|
10 |
uses
|
|
11 |
"~~/src/Provers/Arith/assoc_fold.ML"
|
|
12 |
"~~/src/Provers/Arith/cancel_numerals.ML"
|
|
13 |
"~~/src/Provers/Arith/combine_numerals.ML"
|
|
14 |
("int_arith1.ML")
|
23164
|
15 |
begin
|
|
16 |
|
|
17 |
subsection{*Inequality Reasoning for the Arithmetic Simproc*}
|
|
18 |
|
|
19 |
lemma add_numeral_0: "Numeral0 + a = (a::'a::number_ring)"
|
|
20 |
by simp
|
|
21 |
|
|
22 |
lemma add_numeral_0_right: "a + Numeral0 = (a::'a::number_ring)"
|
|
23 |
by simp
|
|
24 |
|
|
25 |
lemma mult_numeral_1: "Numeral1 * a = (a::'a::number_ring)"
|
|
26 |
by simp
|
|
27 |
|
|
28 |
lemma mult_numeral_1_right: "a * Numeral1 = (a::'a::number_ring)"
|
|
29 |
by simp
|
|
30 |
|
|
31 |
lemma divide_numeral_1: "a / Numeral1 = (a::'a::{number_ring,field})"
|
|
32 |
by simp
|
|
33 |
|
|
34 |
lemma inverse_numeral_1:
|
|
35 |
"inverse Numeral1 = (Numeral1::'a::{number_ring,field})"
|
|
36 |
by simp
|
|
37 |
|
|
38 |
text{*Theorem lists for the cancellation simprocs. The use of binary numerals
|
|
39 |
for 0 and 1 reduces the number of special cases.*}
|
|
40 |
|
|
41 |
lemmas add_0s = add_numeral_0 add_numeral_0_right
|
|
42 |
lemmas mult_1s = mult_numeral_1 mult_numeral_1_right
|
|
43 |
mult_minus1 mult_minus1_right
|
|
44 |
|
|
45 |
|
|
46 |
subsection{*Special Arithmetic Rules for Abstract 0 and 1*}
|
|
47 |
|
|
48 |
text{*Arithmetic computations are defined for binary literals, which leaves 0
|
|
49 |
and 1 as special cases. Addition already has rules for 0, but not 1.
|
|
50 |
Multiplication and unary minus already have rules for both 0 and 1.*}
|
|
51 |
|
|
52 |
|
|
53 |
lemma binop_eq: "[|f x y = g x y; x = x'; y = y'|] ==> f x' y' = g x' y'"
|
|
54 |
by simp
|
|
55 |
|
|
56 |
|
|
57 |
lemmas add_number_of_eq = number_of_add [symmetric]
|
|
58 |
|
|
59 |
text{*Allow 1 on either or both sides*}
|
|
60 |
lemma one_add_one_is_two: "1 + 1 = (2::'a::number_ring)"
|
|
61 |
by (simp del: numeral_1_eq_1 add: numeral_1_eq_1 [symmetric] add_number_of_eq)
|
|
62 |
|
|
63 |
lemmas add_special =
|
|
64 |
one_add_one_is_two
|
|
65 |
binop_eq [of "op +", OF add_number_of_eq numeral_1_eq_1 refl, standard]
|
|
66 |
binop_eq [of "op +", OF add_number_of_eq refl numeral_1_eq_1, standard]
|
|
67 |
|
|
68 |
text{*Allow 1 on either or both sides (1-1 already simplifies to 0)*}
|
|
69 |
lemmas diff_special =
|
|
70 |
binop_eq [of "op -", OF diff_number_of_eq numeral_1_eq_1 refl, standard]
|
|
71 |
binop_eq [of "op -", OF diff_number_of_eq refl numeral_1_eq_1, standard]
|
|
72 |
|
|
73 |
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
|
|
74 |
lemmas eq_special =
|
|
75 |
binop_eq [of "op =", OF eq_number_of_eq numeral_0_eq_0 refl, standard]
|
|
76 |
binop_eq [of "op =", OF eq_number_of_eq numeral_1_eq_1 refl, standard]
|
|
77 |
binop_eq [of "op =", OF eq_number_of_eq refl numeral_0_eq_0, standard]
|
|
78 |
binop_eq [of "op =", OF eq_number_of_eq refl numeral_1_eq_1, standard]
|
|
79 |
|
|
80 |
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
|
|
81 |
lemmas less_special =
|
|
82 |
binop_eq [of "op <", OF less_number_of_eq_neg numeral_0_eq_0 refl, standard]
|
|
83 |
binop_eq [of "op <", OF less_number_of_eq_neg numeral_1_eq_1 refl, standard]
|
|
84 |
binop_eq [of "op <", OF less_number_of_eq_neg refl numeral_0_eq_0, standard]
|
|
85 |
binop_eq [of "op <", OF less_number_of_eq_neg refl numeral_1_eq_1, standard]
|
|
86 |
|
|
87 |
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
|
|
88 |
lemmas le_special =
|
|
89 |
binop_eq [of "op \<le>", OF le_number_of_eq numeral_0_eq_0 refl, standard]
|
|
90 |
binop_eq [of "op \<le>", OF le_number_of_eq numeral_1_eq_1 refl, standard]
|
|
91 |
binop_eq [of "op \<le>", OF le_number_of_eq refl numeral_0_eq_0, standard]
|
|
92 |
binop_eq [of "op \<le>", OF le_number_of_eq refl numeral_1_eq_1, standard]
|
|
93 |
|
|
94 |
lemmas arith_special[simp] =
|
|
95 |
add_special diff_special eq_special less_special le_special
|
|
96 |
|
|
97 |
|
|
98 |
lemma min_max_01: "min (0::int) 1 = 0 & min (1::int) 0 = 0 &
|
|
99 |
max (0::int) 1 = 1 & max (1::int) 0 = 1"
|
|
100 |
by(simp add:min_def max_def)
|
|
101 |
|
|
102 |
lemmas min_max_special[simp] =
|
|
103 |
min_max_01
|
|
104 |
max_def[of "0::int" "number_of v", standard, simp]
|
|
105 |
min_def[of "0::int" "number_of v", standard, simp]
|
|
106 |
max_def[of "number_of u" "0::int", standard, simp]
|
|
107 |
min_def[of "number_of u" "0::int", standard, simp]
|
|
108 |
max_def[of "1::int" "number_of v", standard, simp]
|
|
109 |
min_def[of "1::int" "number_of v", standard, simp]
|
|
110 |
max_def[of "number_of u" "1::int", standard, simp]
|
|
111 |
min_def[of "number_of u" "1::int", standard, simp]
|
|
112 |
|
|
113 |
use "int_arith1.ML"
|
24075
|
114 |
declaration {* K int_arith_setup *}
|
23164
|
115 |
|
|
116 |
|
|
117 |
subsection{*Lemmas About Small Numerals*}
|
|
118 |
|
|
119 |
lemma of_int_m1 [simp]: "of_int -1 = (-1 :: 'a :: number_ring)"
|
|
120 |
proof -
|
|
121 |
have "(of_int -1 :: 'a) = of_int (- 1)" by simp
|
|
122 |
also have "... = - of_int 1" by (simp only: of_int_minus)
|
|
123 |
also have "... = -1" by simp
|
|
124 |
finally show ?thesis .
|
|
125 |
qed
|
|
126 |
|
|
127 |
lemma abs_minus_one [simp]: "abs (-1) = (1::'a::{ordered_idom,number_ring})"
|
|
128 |
by (simp add: abs_if)
|
|
129 |
|
|
130 |
lemma abs_power_minus_one [simp]:
|
|
131 |
"abs(-1 ^ n) = (1::'a::{ordered_idom,number_ring,recpower})"
|
|
132 |
by (simp add: power_abs)
|
|
133 |
|
|
134 |
lemma of_int_number_of_eq:
|
|
135 |
"of_int (number_of v) = (number_of v :: 'a :: number_ring)"
|
|
136 |
by (simp add: number_of_eq)
|
|
137 |
|
|
138 |
text{*Lemmas for specialist use, NOT as default simprules*}
|
|
139 |
lemma mult_2: "2 * z = (z+z::'a::number_ring)"
|
|
140 |
proof -
|
|
141 |
have "2*z = (1 + 1)*z" by simp
|
|
142 |
also have "... = z+z" by (simp add: left_distrib)
|
|
143 |
finally show ?thesis .
|
|
144 |
qed
|
|
145 |
|
|
146 |
lemma mult_2_right: "z * 2 = (z+z::'a::number_ring)"
|
|
147 |
by (subst mult_commute, rule mult_2)
|
|
148 |
|
|
149 |
|
|
150 |
subsection{*More Inequality Reasoning*}
|
|
151 |
|
|
152 |
lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
|
|
153 |
by arith
|
|
154 |
|
|
155 |
lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
|
|
156 |
by arith
|
|
157 |
|
|
158 |
lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<z)"
|
|
159 |
by arith
|
|
160 |
|
|
161 |
lemma zle_add1_eq_le [simp]: "(w < z + (1::int)) = (w\<le>z)"
|
|
162 |
by arith
|
|
163 |
|
|
164 |
lemma int_one_le_iff_zero_less: "((1::int) \<le> z) = (0 < z)"
|
|
165 |
by arith
|
|
166 |
|
|
167 |
|
|
168 |
subsection{*The Functions @{term nat} and @{term int}*}
|
|
169 |
|
|
170 |
text{*Simplify the terms @{term "int 0"}, @{term "int(Suc 0)"} and
|
|
171 |
@{term "w + - z"}*}
|
|
172 |
declare Zero_int_def [symmetric, simp]
|
|
173 |
declare One_int_def [symmetric, simp]
|
|
174 |
|
|
175 |
lemmas diff_int_def_symmetric = diff_int_def [symmetric, simp]
|
|
176 |
|
|
177 |
lemma nat_0: "nat 0 = 0"
|
|
178 |
by (simp add: nat_eq_iff)
|
|
179 |
|
|
180 |
lemma nat_1: "nat 1 = Suc 0"
|
|
181 |
by (subst nat_eq_iff, simp)
|
|
182 |
|
|
183 |
lemma nat_2: "nat 2 = Suc (Suc 0)"
|
|
184 |
by (subst nat_eq_iff, simp)
|
|
185 |
|
|
186 |
lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)"
|
|
187 |
apply (insert zless_nat_conj [of 1 z])
|
|
188 |
apply (auto simp add: nat_1)
|
|
189 |
done
|
|
190 |
|
|
191 |
text{*This simplifies expressions of the form @{term "int n = z"} where
|
|
192 |
z is an integer literal.*}
|
|
193 |
lemmas int_eq_iff_number_of [simp] = int_eq_iff [of _ "number_of v", standard]
|
|
194 |
|
|
195 |
lemma split_nat [arith_split]:
|
|
196 |
"P(nat(i::int)) = ((\<forall>n. i = int n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
|
|
197 |
(is "?P = (?L & ?R)")
|
|
198 |
proof (cases "i < 0")
|
24195
|
199 |
case True thus ?thesis by auto
|
23164
|
200 |
next
|
|
201 |
case False
|
|
202 |
have "?P = ?L"
|
|
203 |
proof
|
|
204 |
assume ?P thus ?L using False by clarsimp
|
|
205 |
next
|
|
206 |
assume ?L thus ?P using False by simp
|
|
207 |
qed
|
|
208 |
with False show ?thesis by simp
|
|
209 |
qed
|
|
210 |
|
23851
|
211 |
lemma of_int_of_nat: "of_int k = (if k < 0 then - of_nat (nat (- k))
|
|
212 |
else of_nat (nat k))"
|
|
213 |
by (auto simp add: of_nat_nat)
|
23164
|
214 |
|
|
215 |
lemma nat_mult_distrib: "(0::int) \<le> z ==> nat (z*z') = nat z * nat z'"
|
|
216 |
apply (cases "0 \<le> z'")
|
|
217 |
apply (rule inj_int [THEN injD])
|
|
218 |
apply (simp add: int_mult zero_le_mult_iff)
|
|
219 |
apply (simp add: mult_le_0_iff)
|
|
220 |
done
|
|
221 |
|
|
222 |
lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
|
|
223 |
apply (rule trans)
|
|
224 |
apply (rule_tac [2] nat_mult_distrib, auto)
|
|
225 |
done
|
|
226 |
|
|
227 |
lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
|
|
228 |
apply (cases "z=0 | w=0")
|
|
229 |
apply (auto simp add: abs_if nat_mult_distrib [symmetric]
|
|
230 |
nat_mult_distrib_neg [symmetric] mult_less_0_iff)
|
|
231 |
done
|
|
232 |
|
|
233 |
|
|
234 |
subsection "Induction principles for int"
|
|
235 |
|
|
236 |
text{*Well-founded segments of the integers*}
|
|
237 |
|
|
238 |
definition
|
|
239 |
int_ge_less_than :: "int => (int * int) set"
|
|
240 |
where
|
|
241 |
"int_ge_less_than d = {(z',z). d \<le> z' & z' < z}"
|
|
242 |
|
|
243 |
theorem wf_int_ge_less_than: "wf (int_ge_less_than d)"
|
|
244 |
proof -
|
|
245 |
have "int_ge_less_than d \<subseteq> measure (%z. nat (z-d))"
|
|
246 |
by (auto simp add: int_ge_less_than_def)
|
|
247 |
thus ?thesis
|
|
248 |
by (rule wf_subset [OF wf_measure])
|
|
249 |
qed
|
|
250 |
|
|
251 |
text{*This variant looks odd, but is typical of the relations suggested
|
|
252 |
by RankFinder.*}
|
|
253 |
|
|
254 |
definition
|
|
255 |
int_ge_less_than2 :: "int => (int * int) set"
|
|
256 |
where
|
|
257 |
"int_ge_less_than2 d = {(z',z). d \<le> z & z' < z}"
|
|
258 |
|
|
259 |
theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)"
|
|
260 |
proof -
|
|
261 |
have "int_ge_less_than2 d \<subseteq> measure (%z. nat (1+z-d))"
|
|
262 |
by (auto simp add: int_ge_less_than2_def)
|
|
263 |
thus ?thesis
|
|
264 |
by (rule wf_subset [OF wf_measure])
|
|
265 |
qed
|
|
266 |
|
24195
|
267 |
(* `set:int': dummy construction *)
|
|
268 |
theorem int_ge_induct [case_names base step, induct set:int]:
|
|
269 |
fixes i :: int
|
|
270 |
assumes ge: "k \<le> i" and
|
|
271 |
base: "P k" and
|
|
272 |
step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
|
23164
|
273 |
shows "P i"
|
|
274 |
proof -
|
|
275 |
{ fix n have "\<And>i::int. n = nat(i-k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
|
|
276 |
proof (induct n)
|
|
277 |
case 0
|
|
278 |
hence "i = k" by arith
|
|
279 |
thus "P i" using base by simp
|
|
280 |
next
|
|
281 |
case (Suc n)
|
24195
|
282 |
then have "n = nat((i - 1) - k)" by arith
|
23164
|
283 |
moreover
|
|
284 |
have ki1: "k \<le> i - 1" using Suc.prems by arith
|
|
285 |
ultimately
|
|
286 |
have "P(i - 1)" by(rule Suc.hyps)
|
|
287 |
from step[OF ki1 this] show ?case by simp
|
|
288 |
qed
|
|
289 |
}
|
|
290 |
with ge show ?thesis by fast
|
|
291 |
qed
|
|
292 |
|
|
293 |
(* `set:int': dummy construction *)
|
|
294 |
theorem int_gr_induct[case_names base step,induct set:int]:
|
|
295 |
assumes gr: "k < (i::int)" and
|
|
296 |
base: "P(k+1)" and
|
|
297 |
step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
|
|
298 |
shows "P i"
|
|
299 |
apply(rule int_ge_induct[of "k + 1"])
|
|
300 |
using gr apply arith
|
|
301 |
apply(rule base)
|
|
302 |
apply (rule step, simp+)
|
|
303 |
done
|
|
304 |
|
|
305 |
theorem int_le_induct[consumes 1,case_names base step]:
|
|
306 |
assumes le: "i \<le> (k::int)" and
|
|
307 |
base: "P(k)" and
|
|
308 |
step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
|
|
309 |
shows "P i"
|
|
310 |
proof -
|
|
311 |
{ fix n have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
|
|
312 |
proof (induct n)
|
|
313 |
case 0
|
|
314 |
hence "i = k" by arith
|
|
315 |
thus "P i" using base by simp
|
|
316 |
next
|
|
317 |
case (Suc n)
|
|
318 |
hence "n = nat(k - (i+1))" by arith
|
|
319 |
moreover
|
|
320 |
have ki1: "i + 1 \<le> k" using Suc.prems by arith
|
|
321 |
ultimately
|
|
322 |
have "P(i+1)" by(rule Suc.hyps)
|
|
323 |
from step[OF ki1 this] show ?case by simp
|
|
324 |
qed
|
|
325 |
}
|
|
326 |
with le show ?thesis by fast
|
|
327 |
qed
|
|
328 |
|
|
329 |
theorem int_less_induct [consumes 1,case_names base step]:
|
|
330 |
assumes less: "(i::int) < k" and
|
|
331 |
base: "P(k - 1)" and
|
|
332 |
step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
|
|
333 |
shows "P i"
|
|
334 |
apply(rule int_le_induct[of _ "k - 1"])
|
|
335 |
using less apply arith
|
|
336 |
apply(rule base)
|
|
337 |
apply (rule step, simp+)
|
|
338 |
done
|
|
339 |
|
|
340 |
subsection{*Intermediate value theorems*}
|
|
341 |
|
|
342 |
lemma int_val_lemma:
|
|
343 |
"(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->
|
|
344 |
f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
|
|
345 |
apply (induct_tac "n", simp)
|
|
346 |
apply (intro strip)
|
|
347 |
apply (erule impE, simp)
|
|
348 |
apply (erule_tac x = n in allE, simp)
|
|
349 |
apply (case_tac "k = f (n+1) ")
|
|
350 |
apply force
|
|
351 |
apply (erule impE)
|
|
352 |
apply (simp add: abs_if split add: split_if_asm)
|
|
353 |
apply (blast intro: le_SucI)
|
|
354 |
done
|
|
355 |
|
|
356 |
lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]
|
|
357 |
|
|
358 |
lemma nat_intermed_int_val:
|
|
359 |
"[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;
|
|
360 |
f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
|
|
361 |
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k
|
|
362 |
in int_val_lemma)
|
|
363 |
apply simp
|
|
364 |
apply (erule exE)
|
|
365 |
apply (rule_tac x = "i+m" in exI, arith)
|
|
366 |
done
|
|
367 |
|
|
368 |
|
|
369 |
subsection{*Products and 1, by T. M. Rasmussen*}
|
|
370 |
|
|
371 |
lemma zabs_less_one_iff [simp]: "(\<bar>z\<bar> < 1) = (z = (0::int))"
|
|
372 |
by arith
|
|
373 |
|
|
374 |
lemma abs_zmult_eq_1: "(\<bar>m * n\<bar> = 1) ==> \<bar>m\<bar> = (1::int)"
|
|
375 |
apply (cases "\<bar>n\<bar>=1")
|
|
376 |
apply (simp add: abs_mult)
|
|
377 |
apply (rule ccontr)
|
|
378 |
apply (auto simp add: linorder_neq_iff abs_mult)
|
|
379 |
apply (subgoal_tac "2 \<le> \<bar>m\<bar> & 2 \<le> \<bar>n\<bar>")
|
|
380 |
prefer 2 apply arith
|
|
381 |
apply (subgoal_tac "2*2 \<le> \<bar>m\<bar> * \<bar>n\<bar>", simp)
|
|
382 |
apply (rule mult_mono, auto)
|
|
383 |
done
|
|
384 |
|
|
385 |
lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1"
|
|
386 |
by (insert abs_zmult_eq_1 [of m n], arith)
|
|
387 |
|
|
388 |
lemma pos_zmult_eq_1_iff: "0 < (m::int) ==> (m * n = 1) = (m = 1 & n = 1)"
|
|
389 |
apply (auto dest: pos_zmult_eq_1_iff_lemma)
|
|
390 |
apply (simp add: mult_commute [of m])
|
|
391 |
apply (frule pos_zmult_eq_1_iff_lemma, auto)
|
|
392 |
done
|
|
393 |
|
|
394 |
lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
|
|
395 |
apply (rule iffI)
|
|
396 |
apply (frule pos_zmult_eq_1_iff_lemma)
|
|
397 |
apply (simp add: mult_commute [of m])
|
|
398 |
apply (frule pos_zmult_eq_1_iff_lemma, auto)
|
|
399 |
done
|
|
400 |
|
|
401 |
|
|
402 |
subsection {* Legacy ML bindings *}
|
|
403 |
|
|
404 |
ML {*
|
|
405 |
val of_int_number_of_eq = @{thm of_int_number_of_eq};
|
|
406 |
val nat_0 = @{thm nat_0};
|
|
407 |
val nat_1 = @{thm nat_1};
|
|
408 |
*}
|
|
409 |
|
|
410 |
end
|