2112
|
1 |
(*---------------------------------------------------------------------------
|
|
2 |
* Pattern matching extensions.
|
|
3 |
*---------------------------------------------------------------------------*)
|
|
4 |
|
|
5 |
fun cread thy s = read_cterm (sign_of thy) (s, (TVar(("DUMMY",0),[])));
|
|
6 |
fun read thy = term_of o cread thy;
|
|
7 |
fun Term s = read WF1.thy s;
|
|
8 |
|
|
9 |
fun Rfunc thy R eqs =
|
|
10 |
let val {induction,rules,theory,tcs} =
|
|
11 |
timeit(fn () => Tfl.Rfunction thy (read thy R) (read thy eqs))
|
|
12 |
in {induction=induction, rules=rules, theory=theory,
|
|
13 |
tcs = map (cterm_of (sign_of theory)) tcs}
|
|
14 |
end;
|
|
15 |
|
|
16 |
fun def tm = timeit (fn () => Tfl.function WF1.thy (Term tm));
|
|
17 |
|
|
18 |
|
|
19 |
|
|
20 |
|
|
21 |
(*---------------------------------------------------------------------------
|
|
22 |
* Normal patterns
|
|
23 |
*---------------------------------------------------------------------------*)
|
|
24 |
def "(f(x,y) = x+y)";
|
|
25 |
|
|
26 |
def "(f1 0 = 1) & (f1 (Suc n) = 2)";
|
|
27 |
|
|
28 |
(*---------------------------------------------------------------------------
|
|
29 |
* Omitted patterns
|
|
30 |
*---------------------------------------------------------------------------*)
|
|
31 |
def "(f2 0 = 1)";
|
|
32 |
|
|
33 |
def "(f3 (h#t) = h)";
|
|
34 |
|
|
35 |
def "(f4 [a,b] = a) & (f4 [b] = b)";
|
|
36 |
|
|
37 |
def "(f5 (0,0) = 0)";
|
|
38 |
|
|
39 |
def "(f6 (0,0) = 0) & (f6 (0,Suc x) = x) & (f6 (Suc x, y) = y+x)";
|
|
40 |
|
|
41 |
def "(f7 (Suc 0, h#t) = 1) & (f7 (Suc(Suc n),h1#h2#t) = h1)";
|
|
42 |
|
|
43 |
def "(f8 (Suc(Suc n),h1#h2#t) = h1)";
|
|
44 |
|
|
45 |
|
|
46 |
(*---------------------------------------------------------------------------
|
|
47 |
* Overlapping patterns
|
|
48 |
*---------------------------------------------------------------------------*)
|
|
49 |
def "(f9 (h1#h2#t) = t) & (f9 x = x)";
|
|
50 |
|
|
51 |
def "(g (x,0) = 1) & (g (0,x) = 2)";
|
|
52 |
|
|
53 |
def "(g1 (0,x) = x) & (g1 (x,0) = x)";
|
|
54 |
|
|
55 |
def "(g2 ([], a#b#x) = 1) & (g2 (a#b#x, y) = 2) & (g2 (z, a#y) = a)";
|
|
56 |
|
|
57 |
def "(g3 (x,y,0) = 1) & (g3 (x,0,y) = 2) & (g3 (0,x,y) = x)";
|
|
58 |
|
|
59 |
def "(g4 (0,y,z) = 1) & (g4 (x,0,z) = 2) & (g4 (x,y,0) = x)";
|
|
60 |
|
|
61 |
def "(g5(0,x,y,z) = 1) & (g5(w,0,y,z) = 2) & (g5(w,x,0,z) = z) & \
|
|
62 |
\ (g5(w,x,y,0) = y)";
|
|
63 |
|
|
64 |
def "(g6 (0,w,x,y,z) = 1) & (g6 (v,0,x,y,z) = 2) & (g6 (v,w,0,y,z) = z) & \
|
|
65 |
\ (g6 (v,w,x,0,z) = z) & (g6 (v,w,x,y,0) = 0)";
|
|
66 |
|
|
67 |
def "(g7 [x, 0] = x) & (g7 [Suc v] = 1) & (g7 z = 2)";
|
|
68 |
|
|
69 |
def "(g8 (h1#h2#h3#h4#h5#h6) = [h1,h2,h3,h4,h5]# g8 h6) & (g8 x = [x])";
|
|
70 |
|
|
71 |
(* Normal *)
|
|
72 |
def "(g9 (Suc(Suc x)) = 1) & (g9 (Suc x) = 2) & (g9 0 = 0)";
|
|
73 |
|
|
74 |
(*---------------------------------------------------------------------------
|
|
75 |
* Inaccessible patterns
|
|
76 |
*---------------------------------------------------------------------------*)
|
|
77 |
def "(h x = 1) & (h x = 2)";
|
|
78 |
|
|
79 |
def "(h1 (x,0) = 1) & (h1 (x,Suc y) = 2) & \
|
|
80 |
\ (h1 (x,y) = x) & (h1 (x,y) = y)";
|
|
81 |
|
|
82 |
def "(h2 (x,0) = 1) & (h2 (0,x) = 2) & \
|
|
83 |
\ (h2 (0,0) = 0) & (h2 (x,y) = x)";
|