| 
1475
 | 
     1  | 
(*  Title:      HOL/Lfp.thy
  | 
| 
923
 | 
     2  | 
    ID:         $Id$
  | 
| 
1475
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
923
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
15386
 | 
     5  | 
*)
  | 
| 
923
 | 
     6  | 
  | 
| 
15386
 | 
     7  | 
header{*Least Fixed Points and the Knaster-Tarski Theorem*}
 | 
| 
923
 | 
     8  | 
  | 
| 
15131
 | 
     9  | 
theory Lfp
  | 
| 
15140
 | 
    10  | 
imports Product_Type
  | 
| 
15131
 | 
    11  | 
begin
  | 
| 
1558
 | 
    12  | 
  | 
| 
 | 
    13  | 
constdefs
  | 
| 
14169
 | 
    14  | 
  lfp :: "['a set \<Rightarrow> 'a set] \<Rightarrow> 'a set"
  | 
| 
15386
 | 
    15  | 
    "lfp(f) == Inter({u. f(u) \<subseteq> u})"    --{*least fixed point*}
 | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
subsection{*Proof of Knaster-Tarski Theorem using @{term lfp}*}
 | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
text{*@{term "lfp f"} is the least upper bound of 
 | 
| 
 | 
    23  | 
      the set @{term "{u. f(u) \<subseteq> u}"} *}
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
lemma lfp_lowerbound: "f(A) \<subseteq> A ==> lfp(f) \<subseteq> A"
  | 
| 
 | 
    26  | 
by (auto simp add: lfp_def)
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma lfp_greatest: "[| !!u. f(u) \<subseteq> u ==> A\<subseteq>u |] ==> A \<subseteq> lfp(f)"
  | 
| 
 | 
    29  | 
by (auto simp add: lfp_def)
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma lfp_lemma2: "mono(f) ==> f(lfp(f)) \<subseteq> lfp(f)"
  | 
| 
 | 
    32  | 
by (rules intro: lfp_greatest subset_trans monoD lfp_lowerbound)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma lfp_lemma3: "mono(f) ==> lfp(f) \<subseteq> f(lfp(f))"
  | 
| 
 | 
    35  | 
by (rules intro: lfp_lemma2 monoD lfp_lowerbound)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma lfp_unfold: "mono(f) ==> lfp(f) = f(lfp(f))"
  | 
| 
 | 
    38  | 
by (rules intro: equalityI lfp_lemma2 lfp_lemma3)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
subsection{*General induction rules for greatest fixed points*}
 | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma lfp_induct: 
  | 
| 
 | 
    43  | 
  assumes lfp: "a: lfp(f)"
  | 
| 
 | 
    44  | 
      and mono: "mono(f)"
  | 
| 
 | 
    45  | 
      and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
 | 
| 
 | 
    46  | 
  shows "P(a)"
  | 
| 
 | 
    47  | 
apply (rule_tac a=a in Int_lower2 [THEN subsetD, THEN CollectD]) 
  | 
| 
 | 
    48  | 
apply (rule lfp [THEN [2] lfp_lowerbound [THEN subsetD]]) 
  | 
| 
 | 
    49  | 
apply (rule Int_greatest)
  | 
| 
 | 
    50  | 
 apply (rule subset_trans [OF Int_lower1 [THEN mono [THEN monoD]]
  | 
| 
 | 
    51  | 
                              mono [THEN lfp_lemma2]]) 
  | 
| 
 | 
    52  | 
apply (blast intro: indhyp) 
  | 
| 
 | 
    53  | 
done
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
text{*Version of induction for binary relations*}
 | 
| 
 | 
    57  | 
lemmas lfp_induct2 =  lfp_induct [of "(a,b)", split_format (complete)]
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma lfp_ordinal_induct: 
  | 
| 
 | 
    61  | 
  assumes mono: "mono f"
  | 
| 
 | 
    62  | 
  shows "[| !!S. P S ==> P(f S); !!M. !S:M. P S ==> P(Union M) |] 
  | 
| 
 | 
    63  | 
         ==> P(lfp f)"
  | 
| 
 | 
    64  | 
apply(subgoal_tac "lfp f = Union{S. S \<subseteq> lfp f & P S}")
 | 
| 
 | 
    65  | 
 apply (erule ssubst, simp) 
  | 
| 
 | 
    66  | 
apply(subgoal_tac "Union{S. S \<subseteq> lfp f & P S} \<subseteq> lfp f")
 | 
| 
 | 
    67  | 
 prefer 2 apply blast
  | 
| 
 | 
    68  | 
apply(rule equalityI)
  | 
| 
 | 
    69  | 
 prefer 2 apply assumption
  | 
| 
 | 
    70  | 
apply(drule mono [THEN monoD])
  | 
| 
 | 
    71  | 
apply (cut_tac mono [THEN lfp_unfold], simp)
  | 
| 
 | 
    72  | 
apply (rule lfp_lowerbound, auto) 
  | 
| 
 | 
    73  | 
done
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
 | 
| 
 | 
    77  | 
    to control unfolding*}
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
lemma def_lfp_unfold: "[| h==lfp(f);  mono(f) |] ==> h = f(h)"
  | 
| 
 | 
    80  | 
by (auto intro!: lfp_unfold)
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
lemma def_lfp_induct: 
  | 
| 
 | 
    83  | 
    "[| A == lfp(f);  mono(f);   a:A;                    
  | 
| 
 | 
    84  | 
        !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
 | 
| 
 | 
    85  | 
     |] ==> P(a)"
  | 
| 
 | 
    86  | 
by (blast intro: lfp_induct)
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
(*Monotonicity of lfp!*)
  | 
| 
 | 
    89  | 
lemma lfp_mono: "[| !!Z. f(Z)\<subseteq>g(Z) |] ==> lfp(f) \<subseteq> lfp(g)"
  | 
| 
 | 
    90  | 
by (rule lfp_lowerbound [THEN lfp_greatest], blast)
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
ML
  | 
| 
 | 
    94  | 
{*
 | 
| 
 | 
    95  | 
val lfp_def = thm "lfp_def";
  | 
| 
 | 
    96  | 
val lfp_lowerbound = thm "lfp_lowerbound";
  | 
| 
 | 
    97  | 
val lfp_greatest = thm "lfp_greatest";
  | 
| 
 | 
    98  | 
val lfp_unfold = thm "lfp_unfold";
  | 
| 
 | 
    99  | 
val lfp_induct = thm "lfp_induct";
  | 
| 
 | 
   100  | 
val lfp_induct2 = thm "lfp_induct2";
  | 
| 
 | 
   101  | 
val lfp_ordinal_induct = thm "lfp_ordinal_induct";
  | 
| 
 | 
   102  | 
val def_lfp_unfold = thm "def_lfp_unfold";
  | 
| 
 | 
   103  | 
val def_lfp_induct = thm "def_lfp_induct";
  | 
| 
 | 
   104  | 
val lfp_mono = thm "lfp_mono";
  | 
| 
 | 
   105  | 
*}
  | 
| 
1558
 | 
   106  | 
  | 
| 
923
 | 
   107  | 
end
  |