| author | blanchet | 
| Mon, 22 Aug 2011 15:02:45 +0200 | |
| changeset 44400 | 01b8b6fcd857 | 
| parent 43971 | 892030194015 | 
| child 44558 | cc878a312673 | 
| permissions | -rw-r--r-- | 
| 43146 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 2 | ||
| 3 | header {* Canonical implementation of sets by distinct lists *}
 | |
| 4 | ||
| 5 | theory Dlist_Cset | |
| 43241 | 6 | imports Dlist List_Cset | 
| 43146 | 7 | begin | 
| 8 | ||
| 9 | definition Set :: "'a dlist \<Rightarrow> 'a Cset.set" where | |
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 10 | "Set dxs = Cset.set (list_of_dlist dxs)" | 
| 43146 | 11 | |
| 12 | definition Coset :: "'a dlist \<Rightarrow> 'a Cset.set" where | |
| 43241 | 13 | "Coset dxs = List_Cset.coset (list_of_dlist dxs)" | 
| 43146 | 14 | |
| 15 | code_datatype Set Coset | |
| 16 | ||
| 17 | declare member_code [code del] | |
| 43241 | 18 | declare List_Cset.is_empty_set [code del] | 
| 19 | declare List_Cset.empty_set [code del] | |
| 20 | declare List_Cset.UNIV_set [code del] | |
| 43146 | 21 | declare insert_set [code del] | 
| 22 | declare remove_set [code del] | |
| 23 | declare compl_set [code del] | |
| 24 | declare compl_coset [code del] | |
| 25 | declare map_set [code del] | |
| 26 | declare filter_set [code del] | |
| 27 | declare forall_set [code del] | |
| 28 | declare exists_set [code del] | |
| 29 | declare card_set [code del] | |
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 30 | declare List_Cset.single_set [code del] | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 31 | declare List_Cset.bind_set [code del] | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 32 | declare List_Cset.pred_of_cset_set [code del] | 
| 43146 | 33 | declare inter_project [code del] | 
| 34 | declare subtract_remove [code del] | |
| 35 | declare union_insert [code del] | |
| 36 | declare Infimum_inf [code del] | |
| 37 | declare Supremum_sup [code del] | |
| 38 | ||
| 39 | lemma Set_Dlist [simp]: | |
| 40 | "Set (Dlist xs) = Cset.Set (set xs)" | |
| 41 | by (rule Cset.set_eqI) (simp add: Set_def) | |
| 42 | ||
| 43 | lemma Coset_Dlist [simp]: | |
| 44 | "Coset (Dlist xs) = Cset.Set (- set xs)" | |
| 45 | by (rule Cset.set_eqI) (simp add: Coset_def) | |
| 46 | ||
| 47 | lemma member_Set [simp]: | |
| 48 | "Cset.member (Set dxs) = List.member (list_of_dlist dxs)" | |
| 49 | by (simp add: Set_def member_set) | |
| 50 | ||
| 51 | lemma member_Coset [simp]: | |
| 52 | "Cset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)" | |
| 53 | by (simp add: Coset_def member_set not_set_compl) | |
| 54 | ||
| 55 | lemma Set_dlist_of_list [code]: | |
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 56 | "Cset.set xs = Set (dlist_of_list xs)" | 
| 43146 | 57 | by (rule Cset.set_eqI) simp | 
| 58 | ||
| 59 | lemma Coset_dlist_of_list [code]: | |
| 43241 | 60 | "List_Cset.coset xs = Coset (dlist_of_list xs)" | 
| 43146 | 61 | by (rule Cset.set_eqI) simp | 
| 62 | ||
| 63 | lemma is_empty_Set [code]: | |
| 64 | "Cset.is_empty (Set dxs) \<longleftrightarrow> Dlist.null dxs" | |
| 65 | by (simp add: Dlist.null_def List.null_def member_set) | |
| 66 | ||
| 67 | lemma bot_code [code]: | |
| 68 | "bot = Set Dlist.empty" | |
| 69 | by (simp add: empty_def) | |
| 70 | ||
| 71 | lemma top_code [code]: | |
| 72 | "top = Coset Dlist.empty" | |
| 73 | by (simp add: empty_def) | |
| 74 | ||
| 75 | lemma insert_code [code]: | |
| 76 | "Cset.insert x (Set dxs) = Set (Dlist.insert x dxs)" | |
| 77 | "Cset.insert x (Coset dxs) = Coset (Dlist.remove x dxs)" | |
| 78 | by (simp_all add: Dlist.insert_def Dlist.remove_def member_set not_set_compl) | |
| 79 | ||
| 80 | lemma remove_code [code]: | |
| 81 | "Cset.remove x (Set dxs) = Set (Dlist.remove x dxs)" | |
| 82 | "Cset.remove x (Coset dxs) = Coset (Dlist.insert x dxs)" | |
| 83 | by (auto simp add: Dlist.insert_def Dlist.remove_def member_set not_set_compl) | |
| 84 | ||
| 85 | lemma member_code [code]: | |
| 86 | "Cset.member (Set dxs) = Dlist.member dxs" | |
| 87 | "Cset.member (Coset dxs) = Not \<circ> Dlist.member dxs" | |
| 88 | by (simp_all add: member_def) | |
| 89 | ||
| 90 | lemma compl_code [code]: | |
| 91 | "- Set dxs = Coset dxs" | |
| 92 | "- Coset dxs = Set dxs" | |
| 93 | by (rule Cset.set_eqI, simp add: member_set not_set_compl)+ | |
| 94 | ||
| 95 | lemma map_code [code]: | |
| 96 | "Cset.map f (Set dxs) = Set (Dlist.map f dxs)" | |
| 97 | by (rule Cset.set_eqI) (simp add: member_set) | |
| 98 | ||
| 99 | lemma filter_code [code]: | |
| 100 | "Cset.filter f (Set dxs) = Set (Dlist.filter f dxs)" | |
| 101 | by (rule Cset.set_eqI) (simp add: member_set) | |
| 102 | ||
| 103 | lemma forall_Set [code]: | |
| 104 | "Cset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)" | |
| 105 | by (simp add: member_set list_all_iff) | |
| 106 | ||
| 107 | lemma exists_Set [code]: | |
| 108 | "Cset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)" | |
| 109 | by (simp add: member_set list_ex_iff) | |
| 110 | ||
| 111 | lemma card_code [code]: | |
| 112 | "Cset.card (Set dxs) = Dlist.length dxs" | |
| 113 | by (simp add: length_def member_set distinct_card) | |
| 114 | ||
| 115 | lemma inter_code [code]: | |
| 116 | "inf A (Set xs) = Set (Dlist.filter (Cset.member A) xs)" | |
| 117 | "inf A (Coset xs) = Dlist.foldr Cset.remove xs A" | |
| 118 | by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter) | |
| 119 | ||
| 120 | lemma subtract_code [code]: | |
| 121 | "A - Set xs = Dlist.foldr Cset.remove xs A" | |
| 122 | "A - Coset xs = Set (Dlist.filter (Cset.member A) xs)" | |
| 123 | by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter) | |
| 124 | ||
| 125 | lemma union_code [code]: | |
| 126 | "sup (Set xs) A = Dlist.foldr Cset.insert xs A" | |
| 127 | "sup (Coset xs) A = Coset (Dlist.filter (Not \<circ> Cset.member A) xs)" | |
| 128 | by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter) | |
| 129 | ||
| 130 | context complete_lattice | |
| 131 | begin | |
| 132 | ||
| 133 | lemma Infimum_code [code]: | |
| 134 | "Infimum (Set As) = Dlist.foldr inf As top" | |
| 135 | by (simp only: Set_def Infimum_inf foldr_def inf.commute) | |
| 136 | ||
| 137 | lemma Supremum_code [code]: | |
| 138 | "Supremum (Set As) = Dlist.foldr sup As bot" | |
| 139 | by (simp only: Set_def Supremum_sup foldr_def sup.commute) | |
| 140 | ||
| 141 | end | |
| 142 | ||
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 143 | declare Cset.single_code[code] | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 144 | |
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 145 | lemma bind_set [code]: | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 146 | "Cset.bind (Dlist_Cset.Set xs) f = foldl (\<lambda>A x. sup A (f x)) Cset.empty (list_of_dlist xs)" | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 147 | by(simp add: List_Cset.bind_set Dlist_Cset.Set_def) | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 148 | hide_fact (open) bind_set | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 149 | |
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 150 | lemma pred_of_cset_set [code]: | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 151 | "pred_of_cset (Dlist_Cset.Set xs) = foldr sup (map Predicate.single (list_of_dlist xs)) bot" | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 152 | by(simp add: List_Cset.pred_of_cset_set Dlist_Cset.Set_def) | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 153 | hide_fact (open) pred_of_cset_set | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 154 | |
| 43146 | 155 | end |