| author | paulson | 
| Fri, 02 Mar 2007 12:38:58 +0100 | |
| changeset 22383 | 01e90256550d | 
| parent 16417 | 9bc16273c2d4 | 
| child 35416 | d8d7d1b785af | 
| permissions | -rw-r--r-- | 
| 4776 | 1 | (* Title: HOL/UNITY/FP | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1998 University of Cambridge | |
| 5 | ||
| 6 | From Misra, "A Logic for Concurrent Programming", 1994 | |
| 7 | *) | |
| 8 | ||
| 13798 | 9 | header{*Fixed Point of a Program*}
 | 
| 10 | ||
| 16417 | 11 | theory FP imports UNITY begin | 
| 4776 | 12 | |
| 13 | constdefs | |
| 14 | ||
| 5648 | 15 | FP_Orig :: "'a program => 'a set" | 
| 16 |     "FP_Orig F == Union{A. ALL B. F : stable (A Int B)}"
 | |
| 4776 | 17 | |
| 5648 | 18 | FP :: "'a program => 'a set" | 
| 19 |     "FP F == {s. F : stable {s}}"
 | |
| 4776 | 20 | |
| 13796 | 21 | lemma stable_FP_Orig_Int: "F : stable (FP_Orig F Int B)" | 
| 15481 | 22 | apply (simp only: FP_Orig_def stable_def Int_Union2) | 
| 13796 | 23 | apply (blast intro: constrains_UN) | 
| 24 | done | |
| 25 | ||
| 26 | lemma FP_Orig_weakest: | |
| 27 | "(!!B. F : stable (A Int B)) ==> A <= FP_Orig F" | |
| 15481 | 28 | by (simp add: FP_Orig_def stable_def, blast) | 
| 13796 | 29 | |
| 30 | lemma stable_FP_Int: "F : stable (FP F Int B)" | |
| 31 | apply (subgoal_tac "FP F Int B = (UN x:B. FP F Int {x}) ")
 | |
| 32 | prefer 2 apply blast | |
| 33 | apply (simp (no_asm_simp) add: Int_insert_right) | |
| 15481 | 34 | apply (simp add: FP_def stable_def) | 
| 13796 | 35 | apply (rule constrains_UN) | 
| 36 | apply (simp (no_asm)) | |
| 37 | done | |
| 38 | ||
| 39 | lemma FP_equivalence: "FP F = FP_Orig F" | |
| 40 | apply (rule equalityI) | |
| 41 | apply (rule stable_FP_Int [THEN FP_Orig_weakest]) | |
| 15481 | 42 | apply (simp add: FP_Orig_def FP_def, clarify) | 
| 13796 | 43 | apply (drule_tac x = "{x}" in spec)
 | 
| 44 | apply (simp add: Int_insert_right) | |
| 45 | done | |
| 46 | ||
| 47 | lemma FP_weakest: | |
| 48 | "(!!B. F : stable (A Int B)) ==> A <= FP F" | |
| 49 | by (simp add: FP_equivalence FP_Orig_weakest) | |
| 50 | ||
| 51 | lemma Compl_FP: | |
| 52 |     "-(FP F) = (UN act: Acts F. -{s. act``{s} <= {s}})"
 | |
| 53 | by (simp add: FP_def stable_def constrains_def, blast) | |
| 54 | ||
| 55 | lemma Diff_FP: "A - (FP F) = (UN act: Acts F. A - {s. act``{s} <= {s}})"
 | |
| 56 | by (simp add: Diff_eq Compl_FP) | |
| 57 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 58 | lemma totalize_FP [simp]: "FP (totalize F) = FP F" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 59 | by (simp add: FP_def) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13798diff
changeset | 60 | |
| 4776 | 61 | end |