| author | huffman | 
| Thu, 18 Feb 2010 14:28:26 -0800 | |
| changeset 35217 | 01e968432467 | 
| parent 33271 | 7be66dee1a5a | 
| child 38656 | d5d342611edb | 
| permissions | -rw-r--r-- | 
| 13586 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 2 | Author: Florian Kammueller and Lawrence C Paulson | |
| 3 | *) | |
| 4 | ||
| 14706 | 5 | header {* Pi and Function Sets *}
 | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
28524diff
changeset | 8 | imports Hilbert_Choice Main | 
| 15131 | 9 | begin | 
| 13586 | 10 | |
| 19736 | 11 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 12 |   Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
 | 
| 19736 | 13 |   "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
 | 
| 13586 | 14 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 15 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 16 |   extensional :: "'a set => ('a => 'b) set" where
 | 
| 28524 | 17 |   "extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
 | 
| 13586 | 18 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 19 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 20 |   "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
 | 
| 28524 | 21 | "restrict f A = (%x. if x \<in> A then f x else undefined)" | 
| 13586 | 22 | |
| 19536 | 23 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 24 |   funcset :: "['a set, 'b set] => ('a => 'b) set"
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 25 | (infixr "->" 60) where | 
| 19536 | 26 | "A -> B == Pi A (%_. B)" | 
| 27 | ||
| 21210 | 28 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 29 | funcset (infixr "\<rightarrow>" 60) | 
| 19536 | 30 | |
| 13586 | 31 | syntax | 
| 19736 | 32 |   "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
| 33 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | |
| 13586 | 34 | |
| 35 | syntax (xsymbols) | |
| 19736 | 36 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 37 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 13586 | 38 | |
| 14565 | 39 | syntax (HTML output) | 
| 19736 | 40 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 41 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 14565 | 42 | |
| 13586 | 43 | translations | 
| 20770 | 44 | "PI x:A. B" == "CONST Pi A (%x. B)" | 
| 45 | "%x:A. f" == "CONST restrict (%x. f) A" | |
| 13586 | 46 | |
| 19736 | 47 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 48 |   "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
 | 
| 19736 | 49 | "compose A g f = (\<lambda>x\<in>A. g (f x))" | 
| 13586 | 50 | |
| 51 | ||
| 52 | subsection{*Basic Properties of @{term Pi}*}
 | |
| 53 | ||
| 31754 | 54 | lemma Pi_I[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" | 
| 14706 | 55 | by (simp add: Pi_def) | 
| 13586 | 56 | |
| 31731 | 57 | lemma Pi_I'[simp]: "(!!x. x : A --> f x : B x) ==> f : Pi A B" | 
| 58 | by(simp add:Pi_def) | |
| 59 | ||
| 13586 | 60 | lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" | 
| 14706 | 61 | by (simp add: Pi_def) | 
| 13586 | 62 | |
| 63 | lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" | |
| 14706 | 64 | by (simp add: Pi_def) | 
| 13586 | 65 | |
| 31759 | 66 | lemma PiE [elim]: | 
| 31754 | 67 | "f : Pi A B ==> (f x : B x ==> Q) ==> (x ~: A ==> Q) ==> Q" | 
| 68 | by(auto simp: Pi_def) | |
| 69 | ||
| 31769 | 70 | lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" | 
| 71 | by (auto intro: Pi_I) | |
| 72 | ||
| 13586 | 73 | lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" | 
| 14706 | 74 | by (simp add: Pi_def) | 
| 13586 | 75 | |
| 14762 | 76 | lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" | 
| 31754 | 77 | by auto | 
| 14762 | 78 | |
| 31754 | 79 | lemma Pi_eq_empty[simp]: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
 | 
| 13593 | 80 | apply (simp add: Pi_def, auto) | 
| 13586 | 81 | txt{*Converse direction requires Axiom of Choice to exhibit a function
 | 
| 82 | picking an element from each non-empty @{term "B x"}*}
 | |
| 13593 | 83 | apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) | 
| 14706 | 84 | apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) | 
| 13586 | 85 | done | 
| 86 | ||
| 13593 | 87 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 31754 | 88 | by (simp add: Pi_def) | 
| 13593 | 89 | |
| 90 | lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" | |
| 31754 | 91 | by (simp add: Pi_def) | 
| 31727 | 92 | (* | 
| 93 | lemma funcset_id [simp]: "(%x. x): A -> A" | |
| 94 | by (simp add: Pi_def) | |
| 95 | *) | |
| 13586 | 96 | text{*Covariance of Pi-sets in their second argument*}
 | 
| 97 | lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" | |
| 31754 | 98 | by auto | 
| 13586 | 99 | |
| 100 | text{*Contravariance of Pi-sets in their first argument*}
 | |
| 101 | lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" | |
| 31754 | 102 | by auto | 
| 13586 | 103 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 104 | lemma prod_final: | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 105 | assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 106 | shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 107 | proof (rule Pi_I) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 108 | fix z | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 109 | assume z: "z \<in> A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 110 | have "f z = (fst (f z), snd (f z))" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 111 | by simp | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 112 | also have "... \<in> B z \<times> C z" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 113 | by (metis SigmaI PiE o_apply 1 2 z) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 114 | finally show "f z \<in> B z \<times> C z" . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 115 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 116 | |
| 13586 | 117 | |
| 118 | subsection{*Composition With a Restricted Domain: @{term compose}*}
 | |
| 119 | ||
| 14706 | 120 | lemma funcset_compose: | 
| 31754 | 121 | "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" | 
| 122 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 123 | |
| 124 | lemma compose_assoc: | |
| 14706 | 125 | "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] | 
| 13586 | 126 | ==> compose A h (compose A g f) = compose A (compose B h g) f" | 
| 31754 | 127 | by (simp add: expand_fun_eq Pi_def compose_def restrict_def) | 
| 13586 | 128 | |
| 129 | lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" | |
| 31754 | 130 | by (simp add: compose_def restrict_def) | 
| 13586 | 131 | |
| 132 | lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" | |
| 14706 | 133 | by (auto simp add: image_def compose_eq) | 
| 13586 | 134 | |
| 135 | ||
| 136 | subsection{*Bounded Abstraction: @{term restrict}*}
 | |
| 137 | ||
| 138 | lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B" | |
| 14706 | 139 | by (simp add: Pi_def restrict_def) | 
| 13586 | 140 | |
| 31754 | 141 | lemma restrictI[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B" | 
| 14706 | 142 | by (simp add: Pi_def restrict_def) | 
| 13586 | 143 | |
| 144 | lemma restrict_apply [simp]: | |
| 28524 | 145 | "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 146 | by (simp add: restrict_def) | 
| 13586 | 147 | |
| 14706 | 148 | lemma restrict_ext: | 
| 13586 | 149 | "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 31754 | 150 | by (simp add: expand_fun_eq Pi_def restrict_def) | 
| 13586 | 151 | |
| 14853 | 152 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" | 
| 14706 | 153 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 154 | |
| 155 | lemma Id_compose: | |
| 14706 | 156 | "[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" | 
| 157 | by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) | |
| 13586 | 158 | |
| 159 | lemma compose_Id: | |
| 14706 | 160 | "[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" | 
| 161 | by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) | |
| 13586 | 162 | |
| 14853 | 163 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 164 | by (auto simp add: restrict_def) | 
| 13586 | 165 | |
| 14745 | 166 | |
| 14762 | 167 | subsection{*Bijections Between Sets*}
 | 
| 168 | ||
| 26106 
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
 nipkow parents: 
21404diff
changeset | 169 | text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
 | 
| 14762 | 170 | the theorems belong here, or need at least @{term Hilbert_Choice}.*}
 | 
| 171 | ||
| 172 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | |
| 32988 | 173 | by (auto simp add: bij_betw_def) | 
| 14762 | 174 | |
| 14853 | 175 | lemma inj_on_compose: | 
| 31754 | 176 | "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" | 
| 177 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 14853 | 178 | |
| 14762 | 179 | lemma bij_betw_compose: | 
| 31754 | 180 | "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" | 
| 181 | apply (simp add: bij_betw_def compose_eq inj_on_compose) | |
| 182 | apply (auto simp add: compose_def image_def) | |
| 183 | done | |
| 14762 | 184 | |
| 14853 | 185 | lemma bij_betw_restrict_eq [simp]: | 
| 31754 | 186 | "bij_betw (restrict f A) A B = bij_betw f A B" | 
| 187 | by (simp add: bij_betw_def) | |
| 14853 | 188 | |
| 189 | ||
| 190 | subsection{*Extensionality*}
 | |
| 191 | ||
| 28524 | 192 | lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined" | 
| 31754 | 193 | by (simp add: extensional_def) | 
| 14853 | 194 | |
| 195 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 31754 | 196 | by (simp add: restrict_def extensional_def) | 
| 14853 | 197 | |
| 198 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 31754 | 199 | by (simp add: compose_def) | 
| 14853 | 200 | |
| 201 | lemma extensionalityI: | |
| 31754 | 202 | "[| f \<in> extensional A; g \<in> extensional A; | 
| 14853 | 203 | !!x. x\<in>A ==> f x = g x |] ==> f = g" | 
| 31754 | 204 | by (force simp add: expand_fun_eq extensional_def) | 
| 14853 | 205 | |
| 33057 | 206 | lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A" | 
| 207 | by (unfold inv_into_def) (fast intro: someI2) | |
| 14853 | 208 | |
| 33057 | 209 | lemma compose_inv_into_id: | 
| 210 | "bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" | |
| 31754 | 211 | apply (simp add: bij_betw_def compose_def) | 
| 212 | apply (rule restrict_ext, auto) | |
| 213 | done | |
| 14853 | 214 | |
| 33057 | 215 | lemma compose_id_inv_into: | 
| 216 | "f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" | |
| 31754 | 217 | apply (simp add: compose_def) | 
| 218 | apply (rule restrict_ext) | |
| 33057 | 219 | apply (simp add: f_inv_into_f) | 
| 31754 | 220 | done | 
| 14853 | 221 | |
| 14762 | 222 | |
| 14745 | 223 | subsection{*Cardinality*}
 | 
| 224 | ||
| 225 | lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" | |
| 31754 | 226 | by (rule card_inj_on_le) auto | 
| 14745 | 227 | |
| 228 | lemma card_bij: | |
| 31754 | 229 | "[|f \<in> A\<rightarrow>B; inj_on f A; | 
| 230 | g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" | |
| 231 | by (blast intro: card_inj order_antisym) | |
| 14745 | 232 | |
| 13586 | 233 | end |