| author | nipkow |
| Sat, 01 Sep 2007 01:21:48 +0200 | |
| changeset 24506 | 020db6ec334a |
| parent 24423 | ae9cd0e92423 |
| child 24700 | 291665d063e4 |
| permissions | -rw-r--r-- |
| 23859 | 1 |
(* ID: $Id$ |
2 |
Author: Florian Haftmann, TU Muenchen |
|
3 |
*) |
|
4 |
||
5 |
header {* Built-in integers for ML *}
|
|
6 |
||
7 |
theory ML_Int |
|
8 |
imports List |
|
9 |
begin |
|
10 |
||
11 |
subsection {* Datatype of built-in integers *}
|
|
12 |
||
13 |
datatype ml_int = ml_int_of_int int |
|
14 |
||
15 |
lemmas [code func del] = ml_int.recs ml_int.cases |
|
16 |
||
17 |
fun |
|
18 |
int_of_ml_int :: "ml_int \<Rightarrow> int" |
|
19 |
where |
|
20 |
"int_of_ml_int (ml_int_of_int k) = k" |
|
21 |
lemmas [code func del] = int_of_ml_int.simps |
|
22 |
||
23 |
lemma ml_int_id [simp]: |
|
24 |
"ml_int_of_int (int_of_ml_int k) = k" |
|
25 |
by (cases k) simp_all |
|
26 |
||
27 |
lemma ml_int: |
|
28 |
"(\<And>k\<Colon>ml_int. PROP P k) \<equiv> (\<And>k\<Colon>int. PROP P (ml_int_of_int k))" |
|
29 |
proof |
|
30 |
fix k :: int |
|
31 |
assume "\<And>k\<Colon>ml_int. PROP P k" |
|
32 |
then show "PROP P (ml_int_of_int k)" . |
|
33 |
next |
|
34 |
fix k :: ml_int |
|
35 |
assume "\<And>k\<Colon>int. PROP P (ml_int_of_int k)" |
|
36 |
then have "PROP P (ml_int_of_int (int_of_ml_int k))" . |
|
37 |
then show "PROP P k" by simp |
|
38 |
qed |
|
39 |
||
40 |
lemma [code func]: "size (k\<Colon>ml_int) = 0" |
|
41 |
by (cases k) simp_all |
|
42 |
||
43 |
||
44 |
subsection {* Built-in integers as datatype on numerals *}
|
|
45 |
||
46 |
instance ml_int :: number |
|
47 |
"number_of \<equiv> ml_int_of_int" .. |
|
48 |
||
49 |
lemmas [code inline] = number_of_ml_int_def [symmetric] |
|
50 |
||
51 |
code_datatype "number_of \<Colon> int \<Rightarrow> ml_int" |
|
52 |
||
53 |
lemma number_of_ml_int_id [simp]: |
|
54 |
"number_of (int_of_ml_int k) = k" |
|
55 |
unfolding number_of_ml_int_def by simp |
|
56 |
||
57 |
||
58 |
subsection {* Basic arithmetic *}
|
|
59 |
||
60 |
instance ml_int :: zero |
|
61 |
[simp]: "0 \<equiv> ml_int_of_int 0" .. |
|
62 |
lemmas [code func del] = zero_ml_int_def |
|
63 |
||
64 |
instance ml_int :: one |
|
65 |
[simp]: "1 \<equiv> ml_int_of_int 1" .. |
|
66 |
lemmas [code func del] = one_ml_int_def |
|
67 |
||
68 |
instance ml_int :: plus |
|
69 |
[simp]: "k + l \<equiv> ml_int_of_int (int_of_ml_int k + int_of_ml_int l)" .. |
|
70 |
lemmas [code func del] = plus_ml_int_def |
|
71 |
lemma plus_ml_int_code [code func]: |
|
72 |
"ml_int_of_int k + ml_int_of_int l = ml_int_of_int (k + l)" |
|
73 |
unfolding plus_ml_int_def by simp |
|
74 |
||
75 |
instance ml_int :: minus |
|
76 |
[simp]: "- k \<equiv> ml_int_of_int (- int_of_ml_int k)" |
|
77 |
[simp]: "k - l \<equiv> ml_int_of_int (int_of_ml_int k - int_of_ml_int l)" .. |
|
78 |
lemmas [code func del] = uminus_ml_int_def minus_ml_int_def |
|
79 |
lemma uminus_ml_int_code [code func]: |
|
80 |
"- ml_int_of_int k \<equiv> ml_int_of_int (- k)" |
|
81 |
unfolding uminus_ml_int_def by simp |
|
82 |
lemma minus_ml_int_code [code func]: |
|
83 |
"ml_int_of_int k - ml_int_of_int l = ml_int_of_int (k - l)" |
|
84 |
unfolding minus_ml_int_def by simp |
|
85 |
||
86 |
instance ml_int :: times |
|
87 |
[simp]: "k * l \<equiv> ml_int_of_int (int_of_ml_int k * int_of_ml_int l)" .. |
|
88 |
lemmas [code func del] = times_ml_int_def |
|
89 |
lemma times_ml_int_code [code func]: |
|
90 |
"ml_int_of_int k * ml_int_of_int l = ml_int_of_int (k * l)" |
|
91 |
unfolding times_ml_int_def by simp |
|
92 |
||
93 |
instance ml_int :: ord |
|
94 |
[simp]: "k \<le> l \<equiv> int_of_ml_int k \<le> int_of_ml_int l" |
|
95 |
[simp]: "k < l \<equiv> int_of_ml_int k < int_of_ml_int l" .. |
|
96 |
lemmas [code func del] = less_eq_ml_int_def less_ml_int_def |
|
97 |
lemma less_eq_ml_int_code [code func]: |
|
98 |
"ml_int_of_int k \<le> ml_int_of_int l \<longleftrightarrow> k \<le> l" |
|
99 |
unfolding less_eq_ml_int_def by simp |
|
100 |
lemma less_ml_int_code [code func]: |
|
101 |
"ml_int_of_int k < ml_int_of_int l \<longleftrightarrow> k < l" |
|
102 |
unfolding less_ml_int_def by simp |
|
103 |
||
104 |
instance ml_int :: ring_1 |
|
105 |
by default (auto simp add: left_distrib right_distrib) |
|
106 |
||
107 |
lemma of_nat_ml_int: "of_nat n = ml_int_of_int (of_nat n)" |
|
108 |
proof (induct n) |
|
109 |
case 0 show ?case by simp |
|
110 |
next |
|
111 |
case (Suc n) |
|
| 24354 | 112 |
then have "int_of_ml_int (ml_int_of_int (int n)) |
| 23859 | 113 |
= int_of_ml_int (of_nat n)" by simp |
| 24354 | 114 |
then have "int n = int_of_ml_int (of_nat n)" by simp |
| 23859 | 115 |
then show ?case by simp |
116 |
qed |
|
117 |
||
118 |
instance ml_int :: number_ring |
|
119 |
by default |
|
120 |
(simp_all add: left_distrib number_of_ml_int_def of_int_of_nat of_nat_ml_int) |
|
121 |
||
122 |
lemma zero_ml_int_code [code inline, code func]: |
|
123 |
"(0\<Colon>ml_int) = Numeral0" |
|
124 |
by simp |
|
125 |
||
126 |
lemma one_ml_int_code [code inline, code func]: |
|
127 |
"(1\<Colon>ml_int) = Numeral1" |
|
128 |
by simp |
|
129 |
||
| 24354 | 130 |
instance ml_int :: abs |
| 23859 | 131 |
"\<bar>k\<bar> \<equiv> if k < 0 then -k else k" .. |
132 |
||
133 |
||
134 |
subsection {* Conversion to @{typ nat} *}
|
|
135 |
||
136 |
definition |
|
137 |
nat_of_ml_int :: "ml_int \<Rightarrow> nat" |
|
138 |
where |
|
139 |
"nat_of_ml_int = nat o int_of_ml_int" |
|
140 |
||
141 |
definition |
|
142 |
nat_of_ml_int_aux :: "ml_int \<Rightarrow> nat \<Rightarrow> nat" where |
|
143 |
"nat_of_ml_int_aux i n = nat_of_ml_int i + n" |
|
144 |
||
145 |
lemma nat_of_ml_int_aux_code [code]: |
|
146 |
"nat_of_ml_int_aux i n = (if i \<le> 0 then n else nat_of_ml_int_aux (i - 1) (Suc n))" |
|
147 |
by (auto simp add: nat_of_ml_int_aux_def nat_of_ml_int_def) |
|
148 |
||
149 |
lemma nat_of_ml_int_code [code]: |
|
150 |
"nat_of_ml_int i = nat_of_ml_int_aux i 0" |
|
151 |
by (simp add: nat_of_ml_int_aux_def) |
|
152 |
||
153 |
||
154 |
subsection {* ML interface *}
|
|
155 |
||
156 |
ML {*
|
|
157 |
structure ML_Int = |
|
158 |
struct |
|
159 |
||
160 |
fun mk k = @{term ml_int_of_int} $ HOLogic.mk_number @{typ ml_int} k;
|
|
161 |
||
162 |
end; |
|
163 |
*} |
|
164 |
||
165 |
||
166 |
subsection {* Code serialization *}
|
|
167 |
||
168 |
code_type ml_int |
|
169 |
(SML "int") |
|
170 |
||
171 |
setup {*
|
|
| 24219 | 172 |
CodeTarget.add_pretty_numeral "SML" false |
|
24423
ae9cd0e92423
overloaded definitions accompanied by explicit constants
haftmann
parents:
24354
diff
changeset
|
173 |
@{const_name ml_int_of_int}
|
| 23859 | 174 |
@{const_name Numeral.B0} @{const_name Numeral.B1}
|
175 |
@{const_name Numeral.Pls} @{const_name Numeral.Min}
|
|
176 |
@{const_name Numeral.Bit}
|
|
177 |
*} |
|
178 |
||
179 |
code_reserved SML int |
|
180 |
||
181 |
code_const "op + \<Colon> ml_int \<Rightarrow> ml_int \<Rightarrow> ml_int" |
|
182 |
(SML "Int.+ ((_), (_))") |
|
183 |
||
184 |
code_const "uminus \<Colon> ml_int \<Rightarrow> ml_int" |
|
185 |
(SML "Int.~") |
|
186 |
||
187 |
code_const "op - \<Colon> ml_int \<Rightarrow> ml_int \<Rightarrow> ml_int" |
|
188 |
(SML "Int.- ((_), (_))") |
|
189 |
||
190 |
code_const "op * \<Colon> ml_int \<Rightarrow> ml_int \<Rightarrow> ml_int" |
|
191 |
(SML "Int.* ((_), (_))") |
|
192 |
||
193 |
code_const "op = \<Colon> ml_int \<Rightarrow> ml_int \<Rightarrow> bool" |
|
194 |
(SML "!((_ : Int.int) = _)") |
|
195 |
||
196 |
code_const "op \<le> \<Colon> ml_int \<Rightarrow> ml_int \<Rightarrow> bool" |
|
197 |
(SML "Int.<= ((_), (_))") |
|
198 |
||
199 |
code_const "op < \<Colon> ml_int \<Rightarrow> ml_int \<Rightarrow> bool" |
|
200 |
(SML "Int.< ((_), (_))") |
|
201 |
||
202 |
end |
|
203 |
||
204 |