author | nipkow |
Wed, 21 Sep 2011 02:38:53 +0200 | |
changeset 45018 | 020e460b6644 |
parent 44870 | 0d23a8ae14df |
child 45605 | a89b4bc311a5 |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
23767
diff
changeset
|
1 |
(* Title: HOL/UNITY/Constrains.thy |
5313
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
3 |
Copyright 1998 University of Cambridge |
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
4 |
|
13797 | 5 |
Weak safety relations: restricted to the set of reachable states. |
5313
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
6 |
*) |
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
7 |
|
13798 | 8 |
header{*Weak Safety*} |
9 |
||
16417 | 10 |
theory Constrains imports UNITY begin |
6535 | 11 |
|
12 |
(*Initial states and program => (final state, reversed trace to it)... |
|
13 |
Arguments MUST be curried in an inductive definition*) |
|
14 |
||
23767 | 15 |
inductive_set |
16 |
traces :: "['a set, ('a * 'a)set set] => ('a * 'a list) set" |
|
17 |
for init :: "'a set" and acts :: "('a * 'a)set set" |
|
18 |
where |
|
6535 | 19 |
(*Initial trace is empty*) |
13805 | 20 |
Init: "s \<in> init ==> (s,[]) \<in> traces init acts" |
6535 | 21 |
|
23767 | 22 |
| Acts: "[| act: acts; (s,evs) \<in> traces init acts; (s,s'): act |] |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
23767
diff
changeset
|
23 |
==> (s', s#evs) \<in> traces init acts" |
6535 | 24 |
|
25 |
||
23767 | 26 |
inductive_set |
27 |
reachable :: "'a program => 'a set" |
|
28 |
for F :: "'a program" |
|
29 |
where |
|
13805 | 30 |
Init: "s \<in> Init F ==> s \<in> reachable F" |
5313
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
31 |
|
23767 | 32 |
| Acts: "[| act: Acts F; s \<in> reachable F; (s,s'): act |] |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
23767
diff
changeset
|
33 |
==> s' \<in> reachable F" |
6536 | 34 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
35 |
definition Constrains :: "['a set, 'a set] => 'a program set" (infixl "Co" 60) where |
13805 | 36 |
"A Co B == {F. F \<in> (reachable F \<inter> A) co B}" |
6536 | 37 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
38 |
definition Unless :: "['a set, 'a set] => 'a program set" (infixl "Unless" 60) where |
13805 | 39 |
"A Unless B == (A-B) Co (A \<union> B)" |
6536 | 40 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
41 |
definition Stable :: "'a set => 'a program set" where |
6536 | 42 |
"Stable A == A Co A" |
5313
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
43 |
|
6570 | 44 |
(*Always is the weak form of "invariant"*) |
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
45 |
definition Always :: "'a set => 'a program set" where |
13805 | 46 |
"Always A == {F. Init F \<subseteq> A} \<inter> Stable A" |
5313
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
47 |
|
13805 | 48 |
(*Polymorphic in both states and the meaning of \<le> *) |
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
49 |
definition Increasing :: "['a => 'b::{order}] => 'a program set" where |
13805 | 50 |
"Increasing f == \<Inter>z. Stable {s. z \<le> f s}" |
5784 | 51 |
|
13797 | 52 |
|
13798 | 53 |
subsection{*traces and reachable*} |
13797 | 54 |
|
55 |
lemma reachable_equiv_traces: |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
56 |
"reachable F = {s. \<exists>evs. (s,evs) \<in> traces (Init F) (Acts F)}" |
13797 | 57 |
apply safe |
58 |
apply (erule_tac [2] traces.induct) |
|
59 |
apply (erule reachable.induct) |
|
60 |
apply (blast intro: reachable.intros traces.intros)+ |
|
61 |
done |
|
62 |
||
13805 | 63 |
lemma Init_subset_reachable: "Init F \<subseteq> reachable F" |
13797 | 64 |
by (blast intro: reachable.intros) |
65 |
||
66 |
lemma stable_reachable [intro!,simp]: |
|
13805 | 67 |
"Acts G \<subseteq> Acts F ==> G \<in> stable (reachable F)" |
13797 | 68 |
by (blast intro: stableI constrainsI reachable.intros) |
69 |
||
70 |
(*The set of all reachable states is an invariant...*) |
|
13805 | 71 |
lemma invariant_reachable: "F \<in> invariant (reachable F)" |
13797 | 72 |
apply (simp add: invariant_def) |
73 |
apply (blast intro: reachable.intros) |
|
74 |
done |
|
75 |
||
76 |
(*...in fact the strongest invariant!*) |
|
13805 | 77 |
lemma invariant_includes_reachable: "F \<in> invariant A ==> reachable F \<subseteq> A" |
13797 | 78 |
apply (simp add: stable_def constrains_def invariant_def) |
79 |
apply (rule subsetI) |
|
80 |
apply (erule reachable.induct) |
|
81 |
apply (blast intro: reachable.intros)+ |
|
82 |
done |
|
83 |
||
84 |
||
13798 | 85 |
subsection{*Co*} |
13797 | 86 |
|
13805 | 87 |
(*F \<in> B co B' ==> F \<in> (reachable F \<inter> B) co (reachable F \<inter> B')*) |
13797 | 88 |
lemmas constrains_reachable_Int = |
89 |
subset_refl [THEN stable_reachable [unfolded stable_def], |
|
90 |
THEN constrains_Int, standard] |
|
91 |
||
92 |
(*Resembles the previous definition of Constrains*) |
|
93 |
lemma Constrains_eq_constrains: |
|
13805 | 94 |
"A Co B = {F. F \<in> (reachable F \<inter> A) co (reachable F \<inter> B)}" |
13797 | 95 |
apply (unfold Constrains_def) |
96 |
apply (blast dest: constrains_reachable_Int intro: constrains_weaken) |
|
97 |
done |
|
98 |
||
13805 | 99 |
lemma constrains_imp_Constrains: "F \<in> A co A' ==> F \<in> A Co A'" |
13797 | 100 |
apply (unfold Constrains_def) |
101 |
apply (blast intro: constrains_weaken_L) |
|
102 |
done |
|
103 |
||
13805 | 104 |
lemma stable_imp_Stable: "F \<in> stable A ==> F \<in> Stable A" |
13797 | 105 |
apply (unfold stable_def Stable_def) |
106 |
apply (erule constrains_imp_Constrains) |
|
107 |
done |
|
108 |
||
109 |
lemma ConstrainsI: |
|
13805 | 110 |
"(!!act s s'. [| act: Acts F; (s,s') \<in> act; s \<in> A |] ==> s': A') |
111 |
==> F \<in> A Co A'" |
|
13797 | 112 |
apply (rule constrains_imp_Constrains) |
113 |
apply (blast intro: constrainsI) |
|
114 |
done |
|
115 |
||
13805 | 116 |
lemma Constrains_empty [iff]: "F \<in> {} Co B" |
13797 | 117 |
by (unfold Constrains_def constrains_def, blast) |
118 |
||
13805 | 119 |
lemma Constrains_UNIV [iff]: "F \<in> A Co UNIV" |
13797 | 120 |
by (blast intro: ConstrainsI) |
121 |
||
122 |
lemma Constrains_weaken_R: |
|
13805 | 123 |
"[| F \<in> A Co A'; A'<=B' |] ==> F \<in> A Co B'" |
13797 | 124 |
apply (unfold Constrains_def) |
125 |
apply (blast intro: constrains_weaken_R) |
|
126 |
done |
|
127 |
||
128 |
lemma Constrains_weaken_L: |
|
13805 | 129 |
"[| F \<in> A Co A'; B \<subseteq> A |] ==> F \<in> B Co A'" |
13797 | 130 |
apply (unfold Constrains_def) |
131 |
apply (blast intro: constrains_weaken_L) |
|
132 |
done |
|
133 |
||
134 |
lemma Constrains_weaken: |
|
13805 | 135 |
"[| F \<in> A Co A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B Co B'" |
13797 | 136 |
apply (unfold Constrains_def) |
137 |
apply (blast intro: constrains_weaken) |
|
138 |
done |
|
139 |
||
140 |
(** Union **) |
|
141 |
||
142 |
lemma Constrains_Un: |
|
13805 | 143 |
"[| F \<in> A Co A'; F \<in> B Co B' |] ==> F \<in> (A \<union> B) Co (A' \<union> B')" |
13797 | 144 |
apply (unfold Constrains_def) |
145 |
apply (blast intro: constrains_Un [THEN constrains_weaken]) |
|
146 |
done |
|
147 |
||
148 |
lemma Constrains_UN: |
|
13805 | 149 |
assumes Co: "!!i. i \<in> I ==> F \<in> (A i) Co (A' i)" |
150 |
shows "F \<in> (\<Union>i \<in> I. A i) Co (\<Union>i \<in> I. A' i)" |
|
13797 | 151 |
apply (unfold Constrains_def) |
152 |
apply (rule CollectI) |
|
153 |
apply (rule Co [unfolded Constrains_def, THEN CollectD, THEN constrains_UN, |
|
154 |
THEN constrains_weaken], auto) |
|
155 |
done |
|
156 |
||
157 |
(** Intersection **) |
|
158 |
||
159 |
lemma Constrains_Int: |
|
13805 | 160 |
"[| F \<in> A Co A'; F \<in> B Co B' |] ==> F \<in> (A \<inter> B) Co (A' \<inter> B')" |
13797 | 161 |
apply (unfold Constrains_def) |
162 |
apply (blast intro: constrains_Int [THEN constrains_weaken]) |
|
163 |
done |
|
164 |
||
165 |
lemma Constrains_INT: |
|
13805 | 166 |
assumes Co: "!!i. i \<in> I ==> F \<in> (A i) Co (A' i)" |
167 |
shows "F \<in> (\<Inter>i \<in> I. A i) Co (\<Inter>i \<in> I. A' i)" |
|
13797 | 168 |
apply (unfold Constrains_def) |
169 |
apply (rule CollectI) |
|
170 |
apply (rule Co [unfolded Constrains_def, THEN CollectD, THEN constrains_INT, |
|
171 |
THEN constrains_weaken], auto) |
|
172 |
done |
|
173 |
||
13805 | 174 |
lemma Constrains_imp_subset: "F \<in> A Co A' ==> reachable F \<inter> A \<subseteq> A'" |
13797 | 175 |
by (simp add: constrains_imp_subset Constrains_def) |
176 |
||
13805 | 177 |
lemma Constrains_trans: "[| F \<in> A Co B; F \<in> B Co C |] ==> F \<in> A Co C" |
13797 | 178 |
apply (simp add: Constrains_eq_constrains) |
179 |
apply (blast intro: constrains_trans constrains_weaken) |
|
180 |
done |
|
181 |
||
182 |
lemma Constrains_cancel: |
|
13805 | 183 |
"[| F \<in> A Co (A' \<union> B); F \<in> B Co B' |] ==> F \<in> A Co (A' \<union> B')" |
44870 | 184 |
apply (simp add: Constrains_eq_constrains constrains_def) |
185 |
apply best |
|
186 |
done |
|
13797 | 187 |
|
188 |
||
13798 | 189 |
subsection{*Stable*} |
13797 | 190 |
|
191 |
(*Useful because there's no Stable_weaken. [Tanja Vos]*) |
|
13805 | 192 |
lemma Stable_eq: "[| F \<in> Stable A; A = B |] ==> F \<in> Stable B" |
13797 | 193 |
by blast |
194 |
||
13805 | 195 |
lemma Stable_eq_stable: "(F \<in> Stable A) = (F \<in> stable (reachable F \<inter> A))" |
13797 | 196 |
by (simp add: Stable_def Constrains_eq_constrains stable_def) |
197 |
||
13805 | 198 |
lemma StableI: "F \<in> A Co A ==> F \<in> Stable A" |
13797 | 199 |
by (unfold Stable_def, assumption) |
200 |
||
13805 | 201 |
lemma StableD: "F \<in> Stable A ==> F \<in> A Co A" |
13797 | 202 |
by (unfold Stable_def, assumption) |
203 |
||
204 |
lemma Stable_Un: |
|
13805 | 205 |
"[| F \<in> Stable A; F \<in> Stable A' |] ==> F \<in> Stable (A \<union> A')" |
13797 | 206 |
apply (unfold Stable_def) |
207 |
apply (blast intro: Constrains_Un) |
|
208 |
done |
|
209 |
||
210 |
lemma Stable_Int: |
|
13805 | 211 |
"[| F \<in> Stable A; F \<in> Stable A' |] ==> F \<in> Stable (A \<inter> A')" |
13797 | 212 |
apply (unfold Stable_def) |
213 |
apply (blast intro: Constrains_Int) |
|
214 |
done |
|
215 |
||
216 |
lemma Stable_Constrains_Un: |
|
13805 | 217 |
"[| F \<in> Stable C; F \<in> A Co (C \<union> A') |] |
218 |
==> F \<in> (C \<union> A) Co (C \<union> A')" |
|
13797 | 219 |
apply (unfold Stable_def) |
220 |
apply (blast intro: Constrains_Un [THEN Constrains_weaken]) |
|
221 |
done |
|
222 |
||
223 |
lemma Stable_Constrains_Int: |
|
13805 | 224 |
"[| F \<in> Stable C; F \<in> (C \<inter> A) Co A' |] |
225 |
==> F \<in> (C \<inter> A) Co (C \<inter> A')" |
|
13797 | 226 |
apply (unfold Stable_def) |
227 |
apply (blast intro: Constrains_Int [THEN Constrains_weaken]) |
|
228 |
done |
|
229 |
||
230 |
lemma Stable_UN: |
|
13805 | 231 |
"(!!i. i \<in> I ==> F \<in> Stable (A i)) ==> F \<in> Stable (\<Union>i \<in> I. A i)" |
13797 | 232 |
by (simp add: Stable_def Constrains_UN) |
233 |
||
234 |
lemma Stable_INT: |
|
13805 | 235 |
"(!!i. i \<in> I ==> F \<in> Stable (A i)) ==> F \<in> Stable (\<Inter>i \<in> I. A i)" |
13797 | 236 |
by (simp add: Stable_def Constrains_INT) |
237 |
||
13805 | 238 |
lemma Stable_reachable: "F \<in> Stable (reachable F)" |
13797 | 239 |
by (simp add: Stable_eq_stable) |
240 |
||
241 |
||
242 |
||
13798 | 243 |
subsection{*Increasing*} |
13797 | 244 |
|
245 |
lemma IncreasingD: |
|
13805 | 246 |
"F \<in> Increasing f ==> F \<in> Stable {s. x \<le> f s}" |
13797 | 247 |
by (unfold Increasing_def, blast) |
248 |
||
249 |
lemma mono_Increasing_o: |
|
13805 | 250 |
"mono g ==> Increasing f \<subseteq> Increasing (g o f)" |
13797 | 251 |
apply (simp add: Increasing_def Stable_def Constrains_def stable_def |
252 |
constrains_def) |
|
253 |
apply (blast intro: monoD order_trans) |
|
254 |
done |
|
255 |
||
256 |
lemma strict_IncreasingD: |
|
13805 | 257 |
"!!z::nat. F \<in> Increasing f ==> F \<in> Stable {s. z < f s}" |
13797 | 258 |
by (simp add: Increasing_def Suc_le_eq [symmetric]) |
259 |
||
260 |
lemma increasing_imp_Increasing: |
|
13805 | 261 |
"F \<in> increasing f ==> F \<in> Increasing f" |
13797 | 262 |
apply (unfold increasing_def Increasing_def) |
263 |
apply (blast intro: stable_imp_Stable) |
|
264 |
done |
|
265 |
||
266 |
lemmas Increasing_constant = |
|
267 |
increasing_constant [THEN increasing_imp_Increasing, standard, iff] |
|
268 |
||
269 |
||
13798 | 270 |
subsection{*The Elimination Theorem*} |
271 |
||
272 |
(*The "free" m has become universally quantified! Should the premise be !!m |
|
13805 | 273 |
instead of \<forall>m ? Would make it harder to use in forward proof.*) |
13797 | 274 |
|
275 |
lemma Elimination: |
|
13805 | 276 |
"[| \<forall>m. F \<in> {s. s x = m} Co (B m) |] |
277 |
==> F \<in> {s. s x \<in> M} Co (\<Union>m \<in> M. B m)" |
|
13797 | 278 |
by (unfold Constrains_def constrains_def, blast) |
279 |
||
280 |
(*As above, but for the trivial case of a one-variable state, in which the |
|
281 |
state is identified with its one variable.*) |
|
282 |
lemma Elimination_sing: |
|
13805 | 283 |
"(\<forall>m. F \<in> {m} Co (B m)) ==> F \<in> M Co (\<Union>m \<in> M. B m)" |
13797 | 284 |
by (unfold Constrains_def constrains_def, blast) |
285 |
||
286 |
||
13798 | 287 |
subsection{*Specialized laws for handling Always*} |
13797 | 288 |
|
289 |
(** Natural deduction rules for "Always A" **) |
|
290 |
||
13805 | 291 |
lemma AlwaysI: "[| Init F \<subseteq> A; F \<in> Stable A |] ==> F \<in> Always A" |
13797 | 292 |
by (simp add: Always_def) |
293 |
||
13805 | 294 |
lemma AlwaysD: "F \<in> Always A ==> Init F \<subseteq> A & F \<in> Stable A" |
13797 | 295 |
by (simp add: Always_def) |
296 |
||
297 |
lemmas AlwaysE = AlwaysD [THEN conjE, standard] |
|
298 |
lemmas Always_imp_Stable = AlwaysD [THEN conjunct2, standard] |
|
299 |
||
300 |
||
301 |
(*The set of all reachable states is Always*) |
|
13805 | 302 |
lemma Always_includes_reachable: "F \<in> Always A ==> reachable F \<subseteq> A" |
13797 | 303 |
apply (simp add: Stable_def Constrains_def constrains_def Always_def) |
304 |
apply (rule subsetI) |
|
305 |
apply (erule reachable.induct) |
|
306 |
apply (blast intro: reachable.intros)+ |
|
307 |
done |
|
308 |
||
309 |
lemma invariant_imp_Always: |
|
13805 | 310 |
"F \<in> invariant A ==> F \<in> Always A" |
13797 | 311 |
apply (unfold Always_def invariant_def Stable_def stable_def) |
312 |
apply (blast intro: constrains_imp_Constrains) |
|
313 |
done |
|
314 |
||
315 |
lemmas Always_reachable = |
|
316 |
invariant_reachable [THEN invariant_imp_Always, standard] |
|
317 |
||
318 |
lemma Always_eq_invariant_reachable: |
|
13805 | 319 |
"Always A = {F. F \<in> invariant (reachable F \<inter> A)}" |
13797 | 320 |
apply (simp add: Always_def invariant_def Stable_def Constrains_eq_constrains |
321 |
stable_def) |
|
322 |
apply (blast intro: reachable.intros) |
|
323 |
done |
|
324 |
||
325 |
(*the RHS is the traditional definition of the "always" operator*) |
|
13805 | 326 |
lemma Always_eq_includes_reachable: "Always A = {F. reachable F \<subseteq> A}" |
13797 | 327 |
by (auto dest: invariant_includes_reachable simp add: Int_absorb2 invariant_reachable Always_eq_invariant_reachable) |
328 |
||
329 |
lemma Always_UNIV_eq [simp]: "Always UNIV = UNIV" |
|
330 |
by (auto simp add: Always_eq_includes_reachable) |
|
331 |
||
13805 | 332 |
lemma UNIV_AlwaysI: "UNIV \<subseteq> A ==> F \<in> Always A" |
13797 | 333 |
by (auto simp add: Always_eq_includes_reachable) |
334 |
||
13805 | 335 |
lemma Always_eq_UN_invariant: "Always A = (\<Union>I \<in> Pow A. invariant I)" |
13797 | 336 |
apply (simp add: Always_eq_includes_reachable) |
337 |
apply (blast intro: invariantI Init_subset_reachable [THEN subsetD] |
|
338 |
invariant_includes_reachable [THEN subsetD]) |
|
339 |
done |
|
340 |
||
13805 | 341 |
lemma Always_weaken: "[| F \<in> Always A; A \<subseteq> B |] ==> F \<in> Always B" |
13797 | 342 |
by (auto simp add: Always_eq_includes_reachable) |
343 |
||
344 |
||
13798 | 345 |
subsection{*"Co" rules involving Always*} |
13797 | 346 |
|
347 |
lemma Always_Constrains_pre: |
|
13805 | 348 |
"F \<in> Always INV ==> (F \<in> (INV \<inter> A) Co A') = (F \<in> A Co A')" |
13797 | 349 |
by (simp add: Always_includes_reachable [THEN Int_absorb2] Constrains_def |
350 |
Int_assoc [symmetric]) |
|
351 |
||
352 |
lemma Always_Constrains_post: |
|
13805 | 353 |
"F \<in> Always INV ==> (F \<in> A Co (INV \<inter> A')) = (F \<in> A Co A')" |
13797 | 354 |
by (simp add: Always_includes_reachable [THEN Int_absorb2] |
355 |
Constrains_eq_constrains Int_assoc [symmetric]) |
|
356 |
||
13805 | 357 |
(* [| F \<in> Always INV; F \<in> (INV \<inter> A) Co A' |] ==> F \<in> A Co A' *) |
13797 | 358 |
lemmas Always_ConstrainsI = Always_Constrains_pre [THEN iffD1, standard] |
359 |
||
13805 | 360 |
(* [| F \<in> Always INV; F \<in> A Co A' |] ==> F \<in> A Co (INV \<inter> A') *) |
13797 | 361 |
lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2, standard] |
362 |
||
363 |
(*The analogous proof of Always_LeadsTo_weaken doesn't terminate*) |
|
364 |
lemma Always_Constrains_weaken: |
|
13805 | 365 |
"[| F \<in> Always C; F \<in> A Co A'; |
366 |
C \<inter> B \<subseteq> A; C \<inter> A' \<subseteq> B' |] |
|
367 |
==> F \<in> B Co B'" |
|
13797 | 368 |
apply (rule Always_ConstrainsI, assumption) |
369 |
apply (drule Always_ConstrainsD, assumption) |
|
370 |
apply (blast intro: Constrains_weaken) |
|
371 |
done |
|
372 |
||
373 |
||
374 |
(** Conjoining Always properties **) |
|
375 |
||
13805 | 376 |
lemma Always_Int_distrib: "Always (A \<inter> B) = Always A \<inter> Always B" |
13797 | 377 |
by (auto simp add: Always_eq_includes_reachable) |
378 |
||
13805 | 379 |
lemma Always_INT_distrib: "Always (INTER I A) = (\<Inter>i \<in> I. Always (A i))" |
13797 | 380 |
by (auto simp add: Always_eq_includes_reachable) |
381 |
||
382 |
lemma Always_Int_I: |
|
13805 | 383 |
"[| F \<in> Always A; F \<in> Always B |] ==> F \<in> Always (A \<inter> B)" |
13797 | 384 |
by (simp add: Always_Int_distrib) |
385 |
||
386 |
(*Allows a kind of "implication introduction"*) |
|
387 |
lemma Always_Compl_Un_eq: |
|
13805 | 388 |
"F \<in> Always A ==> (F \<in> Always (-A \<union> B)) = (F \<in> Always B)" |
13797 | 389 |
by (auto simp add: Always_eq_includes_reachable) |
390 |
||
391 |
(*Delete the nearest invariance assumption (which will be the second one |
|
392 |
used by Always_Int_I) *) |
|
13805 | 393 |
lemmas Always_thin = thin_rl [of "F \<in> Always A", standard] |
13797 | 394 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
395 |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
396 |
subsection{*Totalize*} |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
397 |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
398 |
lemma reachable_imp_reachable_tot: |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
399 |
"s \<in> reachable F ==> s \<in> reachable (totalize F)" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
400 |
apply (erule reachable.induct) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
401 |
apply (rule reachable.Init) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
402 |
apply simp |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
403 |
apply (rule_tac act = "totalize_act act" in reachable.Acts) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
404 |
apply (auto simp add: totalize_act_def) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
405 |
done |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
406 |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
407 |
lemma reachable_tot_imp_reachable: |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
408 |
"s \<in> reachable (totalize F) ==> s \<in> reachable F" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
409 |
apply (erule reachable.induct) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
410 |
apply (rule reachable.Init, simp) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
411 |
apply (force simp add: totalize_act_def intro: reachable.Acts) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
412 |
done |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
413 |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
414 |
lemma reachable_tot_eq [simp]: "reachable (totalize F) = reachable F" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
415 |
by (blast intro: reachable_imp_reachable_tot reachable_tot_imp_reachable) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
416 |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
417 |
lemma totalize_Constrains_iff [simp]: "(totalize F \<in> A Co B) = (F \<in> A Co B)" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
418 |
by (simp add: Constrains_def) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
419 |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
420 |
lemma totalize_Stable_iff [simp]: "(totalize F \<in> Stable A) = (F \<in> Stable A)" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
421 |
by (simp add: Stable_def) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
422 |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
423 |
lemma totalize_Always_iff [simp]: "(totalize F \<in> Always A) = (F \<in> Always A)" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
424 |
by (simp add: Always_def) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
425 |
|
5313
1861a564d7e2
Constrains, Stable, Invariant...more of the substitution axiom, but Union
paulson
parents:
diff
changeset
|
426 |
end |