| author | paulson | 
| Tue, 11 Jul 2023 20:22:08 +0100 | |
| changeset 78321 | 021fb1b01de5 | 
| parent 76290 | 64d29ebb7d3d | 
| child 81543 | fa37ee54644c | 
| permissions | -rw-r--r-- | 
| 41775 | 1 | (* Title: HOL/Auth/Guard/Proto.thy | 
| 2 | Author: Frederic Blanqui, University of Cambridge Computer Laboratory | |
| 3 | Copyright 2002 University of Cambridge | |
| 4 | *) | |
| 13508 | 5 | |
| 61830 | 6 | section\<open>Other Protocol-Independent Results\<close> | 
| 13508 | 7 | |
| 16417 | 8 | theory Proto imports Guard_Public begin | 
| 13508 | 9 | |
| 61830 | 10 | subsection\<open>protocols\<close> | 
| 13508 | 11 | |
| 41774 | 12 | type_synonym rule = "event set * event" | 
| 13508 | 13 | |
| 20768 | 14 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 15 | msg' :: "rule => msg" where | 
| 20768 | 16 | "msg' R == msg (snd R)" | 
| 13508 | 17 | |
| 41774 | 18 | type_synonym proto = "rule set" | 
| 13508 | 19 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 20 | definition wdef :: "proto => bool" where | 
| 67613 | 21 | "wdef p \<equiv> \<forall>R k. R \<in> p \<longrightarrow> Number k \<in> parts {msg' R}
 | 
| 22 | \<longrightarrow> Number k \<in> parts (msg`(fst R))" | |
| 13508 | 23 | |
| 61830 | 24 | subsection\<open>substitutions\<close> | 
| 13508 | 25 | |
| 26 | record subs = | |
| 27 | agent :: "agent => agent" | |
| 28 | nonce :: "nat => nat" | |
| 29 | nb :: "nat => msg" | |
| 30 | key :: "key => key" | |
| 31 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 32 | primrec apm :: "subs => msg => msg" where | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 33 | "apm s (Agent A) = Agent (agent s A)" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 34 | | "apm s (Nonce n) = Nonce (nonce s n)" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 35 | | "apm s (Number n) = nb s n" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 36 | | "apm s (Key K) = Key (key s K)" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 37 | | "apm s (Hash X) = Hash (apm s X)" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 38 | | "apm s (Crypt K X) = ( | 
| 67613 | 39 | if (\<exists>A. K = pubK A) then Crypt (pubK (agent s (agt K))) (apm s X) | 
| 40 | else if (\<exists>A. K = priK A) then Crypt (priK (agent s (agt K))) (apm s X) | |
| 13508 | 41 | else Crypt (key s K) (apm s X))" | 
| 61956 | 42 | | "apm s \<lbrace>X,Y\<rbrace> = \<lbrace>apm s X, apm s Y\<rbrace>" | 
| 13508 | 43 | |
| 67613 | 44 | lemma apm_parts: "X \<in> parts {Y} \<Longrightarrow> apm s X \<in> parts {apm s Y}"
 | 
| 13508 | 45 | apply (erule parts.induct, simp_all, blast) | 
| 46 | apply (erule parts.Fst) | |
| 47 | apply (erule parts.Snd) | |
| 48 | by (erule parts.Body)+ | |
| 49 | ||
| 67613 | 50 | lemma Nonce_apm [rule_format]: "Nonce n \<in> parts {apm s X} \<Longrightarrow>
 | 
| 51 | (\<forall>k. Number k \<in> parts {X} \<longrightarrow> Nonce n \<notin> parts {nb s k}) \<longrightarrow>
 | |
| 52 | (\<exists>k. Nonce k \<in> parts {X} \<and> nonce s k = n)"
 | |
| 13508 | 53 | by (induct X, simp_all, blast) | 
| 54 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 55 | lemma wdef_Nonce: "\<lbrakk>Nonce n \<in> parts {apm s X}; R \<in> p; msg' R = X; wdef p;
 | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 56 | Nonce n \<notin> parts (apm s `(msg `(fst R)))\<rbrakk> \<Longrightarrow> | 
| 67613 | 57 | (\<exists>k. Nonce k \<in> parts {X} \<and> nonce s k = n)"
 | 
| 13508 | 58 | apply (erule Nonce_apm, unfold wdef_def) | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 59 | apply (drule_tac x=R in spec, drule_tac x=k in spec, clarsimp) | 
| 13508 | 60 | apply (drule_tac x=x in bspec, simp) | 
| 61 | apply (drule_tac Y="msg x" and s=s in apm_parts, simp) | |
| 62 | by (blast dest: parts_parts) | |
| 63 | ||
| 67613 | 64 | primrec ap :: "subs \<Rightarrow> event \<Rightarrow> event" where | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 65 | "ap s (Says A B X) = Says (agent s A) (agent s B) (apm s X)" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 66 | | "ap s (Gets A X) = Gets (agent s A) (apm s X)" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 67 | | "ap s (Notes A X) = Notes (agent s A) (apm s X)" | 
| 13508 | 68 | |
| 20768 | 69 | abbreviation | 
| 67613 | 70 | ap' :: "subs \<Rightarrow> rule \<Rightarrow> event" where | 
| 71 | "ap' s R \<equiv> ap s (snd R)" | |
| 13508 | 72 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 73 | abbreviation | 
| 67613 | 74 | apm' :: "subs \<Rightarrow> rule \<Rightarrow> msg" where | 
| 75 | "apm' s R \<equiv> apm s (msg' R)" | |
| 20768 | 76 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 77 | abbreviation | 
| 67613 | 78 | priK' :: "subs \<Rightarrow> agent \<Rightarrow> key" where | 
| 79 | "priK' s A \<equiv> priK (agent s A)" | |
| 20768 | 80 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 81 | abbreviation | 
| 67613 | 82 | pubK' :: "subs \<Rightarrow> agent \<Rightarrow> key" where | 
| 83 | "pubK' s A \<equiv> pubK (agent s A)" | |
| 13508 | 84 | |
| 61830 | 85 | subsection\<open>nonces generated by a rule\<close> | 
| 13508 | 86 | |
| 67613 | 87 | definition newn :: "rule \<Rightarrow> nat set" where | 
| 88 | "newn R \<equiv> {n. Nonce n \<in> parts {msg (snd R)} \<and> Nonce n \<notin> parts (msg`(fst R))}"
 | |
| 13508 | 89 | |
| 67613 | 90 | lemma newn_parts: "n \<in> newn R \<Longrightarrow> Nonce (nonce s n) \<in> parts {apm' s R}"
 | 
| 13508 | 91 | by (auto simp: newn_def dest: apm_parts) | 
| 92 | ||
| 61830 | 93 | subsection\<open>traces generated by a protocol\<close> | 
| 13508 | 94 | |
| 67613 | 95 | definition ok :: "event list \<Rightarrow> rule \<Rightarrow> subs \<Rightarrow> bool" where | 
| 96 | "ok evs R s \<equiv> ((\<forall>x. x \<in> fst R \<longrightarrow> ap s x \<in> set evs) | |
| 97 | \<and> (\<forall>n. n \<in> newn R \<longrightarrow> Nonce (nonce s n) \<notin> used evs))" | |
| 13508 | 98 | |
| 23746 | 99 | inductive_set | 
| 100 | tr :: "proto => event list set" | |
| 101 | for p :: proto | |
| 102 | where | |
| 13508 | 103 | |
| 67613 | 104 | Nil [intro]: "[] \<in> tr p" | 
| 13508 | 105 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 106 | | Fake [intro]: "\<lbrakk>evsf \<in> tr p; X \<in> synth (analz (spies evsf))\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 107 | \<Longrightarrow> Says Spy B X # evsf \<in> tr p" | 
| 13508 | 108 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 109 | | Proto [intro]: "\<lbrakk>evs \<in> tr p; R \<in> p; ok evs R s\<rbrakk> \<Longrightarrow> ap' s R # evs \<in> tr p" | 
| 13508 | 110 | |
| 61830 | 111 | subsection\<open>general properties\<close> | 
| 13508 | 112 | |
| 113 | lemma one_step_tr [iff]: "one_step (tr p)" | |
| 114 | apply (unfold one_step_def, clarify) | |
| 67613 | 115 | by (ind_cases "ev # evs \<in> tr p" for ev evs, auto) | 
| 13508 | 116 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 117 | definition has_only_Says' :: "proto => bool" where | 
| 67613 | 118 | "has_only_Says' p \<equiv> \<forall>R. R \<in> p \<longrightarrow> is_Says (snd R)" | 
| 13508 | 119 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 120 | lemma has_only_Says'D: "\<lbrakk>R \<in> p; has_only_Says' p\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 121 | \<Longrightarrow> (\<exists>A B X. snd R = Says A B X)" | 
| 13508 | 122 | by (unfold has_only_Says'_def is_Says_def, blast) | 
| 123 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 124 | lemma has_only_Says_tr [simp]: "has_only_Says' p \<Longrightarrow> has_only_Says (tr p)" | 
| 76290 
64d29ebb7d3d
Mostly, removing the unfold method
 paulson <lp15@cam.ac.uk> parents: 
76289diff
changeset | 125 | unfolding has_only_Says_def | 
| 13508 | 126 | apply (rule allI, rule allI, rule impI) | 
| 127 | apply (erule tr.induct) | |
| 128 | apply (auto simp: has_only_Says'_def ok_def) | |
| 129 | by (drule_tac x=a in spec, auto simp: is_Says_def) | |
| 130 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 131 | lemma has_only_Says'_in_trD: "\<lbrakk>has_only_Says' p; list @ ev # evs1 \<in> tr p\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 132 | \<Longrightarrow> (\<exists>A B X. ev = Says A B X)" | 
| 13508 | 133 | by (drule has_only_Says_tr, auto) | 
| 134 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 135 | lemma ok_not_used: "\<lbrakk>Nonce n \<notin> used evs; ok evs R s; | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 136 | \<forall>x. x \<in> fst R \<longrightarrow> is_Says x\<rbrakk> \<Longrightarrow> Nonce n \<notin> parts (apm s `(msg `(fst R)))" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 137 | apply (unfold ok_def, clarsimp) | 
| 13508 | 138 | apply (drule_tac x=x in spec, drule_tac x=x in spec) | 
| 139 | by (auto simp: is_Says_def dest: Says_imp_spies not_used_not_spied parts_parts) | |
| 140 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 141 | lemma ok_is_Says: "\<lbrakk>evs' @ ev # evs \<in> tr p; ok evs R s; has_only_Says' p; | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 142 | R \<in> p; x \<in> fst R\<rbrakk> \<Longrightarrow> is_Says x" | 
| 13508 | 143 | apply (unfold ok_def is_Says_def, clarify) | 
| 144 | apply (drule_tac x=x in spec, simp) | |
| 145 | apply (subgoal_tac "one_step (tr p)") | |
| 146 | apply (drule trunc, simp, drule one_step_Cons, simp) | |
| 147 | apply (drule has_only_SaysD, simp+) | |
| 148 | by (clarify, case_tac x, auto) | |
| 149 | ||
| 61830 | 150 | subsection\<open>types\<close> | 
| 13508 | 151 | |
| 67613 | 152 | type_synonym keyfun = "rule \<Rightarrow> subs \<Rightarrow> nat \<Rightarrow> event list \<Rightarrow> key set" | 
| 13508 | 153 | |
| 67613 | 154 | type_synonym secfun = "rule \<Rightarrow> nat \<Rightarrow> subs \<Rightarrow> key set \<Rightarrow> msg" | 
| 13508 | 155 | |
| 61830 | 156 | subsection\<open>introduction of a fresh guarded nonce\<close> | 
| 13508 | 157 | |
| 67613 | 158 | definition fresh :: "proto \<Rightarrow> rule \<Rightarrow> subs \<Rightarrow> nat \<Rightarrow> key set \<Rightarrow> event list | 
| 159 | \<Rightarrow> bool" where | |
| 160 | "fresh p R s n Ks evs \<equiv> (\<exists>evs1 evs2. evs = evs2 @ ap' s R # evs1 | |
| 161 | \<and> Nonce n \<notin> used evs1 \<and> R \<in> p \<and> ok evs1 R s \<and> Nonce n \<in> parts {apm' s R}
 | |
| 162 | \<and> apm' s R \<in> guard n Ks)" | |
| 13508 | 163 | |
| 67613 | 164 | lemma freshD: "fresh p R s n Ks evs \<Longrightarrow> (\<exists>evs1 evs2. | 
| 165 | evs = evs2 @ ap' s R # evs1 \<and> Nonce n \<notin> used evs1 \<and> R \<in> p \<and> ok evs1 R s | |
| 166 | \<and> Nonce n \<in> parts {apm' s R} \<and> apm' s R \<in> guard n Ks)"
 | |
| 76289 | 167 | unfolding fresh_def by blast | 
| 13508 | 168 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 169 | lemma freshI [intro]: "\<lbrakk>Nonce n \<notin> used evs1; R \<in> p; Nonce n \<in> parts {apm' s R};
 | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 170 | ok evs1 R s; apm' s R \<in> guard n Ks\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 171 | \<Longrightarrow> fresh p R s n Ks (list @ ap' s R # evs1)" | 
| 76289 | 172 | unfolding fresh_def by blast | 
| 13508 | 173 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 174 | lemma freshI': "\<lbrakk>Nonce n \<notin> used evs1; (l,r) \<in> p; | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 175 | Nonce n \<in> parts {apm s (msg r)}; ok evs1 (l,r) s; apm s (msg r) \<in> guard n Ks\<rbrakk>
 | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 176 | \<Longrightarrow> fresh p (l,r) s n Ks (evs2 @ ap s r # evs1)" | 
| 13508 | 177 | by (drule freshI, simp+) | 
| 178 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 179 | lemma fresh_used: "\<lbrakk>fresh p R' s' n Ks evs; has_only_Says' p\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 180 | \<Longrightarrow> Nonce n \<in> used evs" | 
| 13508 | 181 | apply (unfold fresh_def, clarify) | 
| 182 | apply (drule has_only_Says'D) | |
| 183 | by (auto intro: parts_used_app) | |
| 184 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 185 | lemma fresh_newn: "\<lbrakk>evs' @ ap' s R # evs \<in> tr p; wdef p; has_only_Says' p; | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 186 | Nonce n \<notin> used evs; R \<in> p; ok evs R s; Nonce n \<in> parts {apm' s R}\<rbrakk>
 | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 187 | \<Longrightarrow> \<exists>k. k \<in> newn R \<and> nonce s k = n" | 
| 13508 | 188 | apply (drule wdef_Nonce, simp+) | 
| 189 | apply (frule ok_not_used, simp+) | |
| 190 | apply (clarify, erule ok_is_Says, simp+) | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 191 | apply (clarify, rule_tac x=k in exI, simp add: newn_def) | 
| 13508 | 192 | apply (clarify, drule_tac Y="msg x" and s=s in apm_parts) | 
| 193 | apply (drule ok_not_used, simp+) | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 194 | by (clarify, erule ok_is_Says, simp_all) | 
| 13508 | 195 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 196 | lemma fresh_rule: "\<lbrakk>evs' @ ev # evs \<in> tr p; wdef p; Nonce n \<notin> used evs; | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 197 | Nonce n \<in> parts {msg ev}\<rbrakk> \<Longrightarrow> \<exists>R s. R \<in> p \<and> ap' s R = ev"
 | 
| 67613 | 198 | apply (drule trunc, simp, ind_cases "ev # evs \<in> tr p", simp) | 
| 13508 | 199 | by (drule_tac x=X in in_sub, drule parts_sub, simp, simp, blast+) | 
| 200 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 201 | lemma fresh_ruleD: "\<lbrakk>fresh p R' s' n Ks evs; keys R' s' n evs \<subseteq> Ks; wdef p; | 
| 67613 | 202 | has_only_Says' p; evs \<in> tr p; \<forall>R k s. nonce s k = n \<longrightarrow> Nonce n \<in> used evs \<longrightarrow> | 
| 203 | R \<in> p \<longrightarrow> k \<in> newn R \<longrightarrow> Nonce n \<in> parts {apm' s R} \<longrightarrow> apm' s R \<in> guard n Ks \<longrightarrow>
 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 204 | apm' s R \<in> parts (spies evs) \<longrightarrow> keys R s n evs \<subseteq> Ks \<longrightarrow> P\<rbrakk> \<Longrightarrow> P" | 
| 13508 | 205 | apply (frule fresh_used, simp) | 
| 206 | apply (unfold fresh_def, clarify) | |
| 207 | apply (drule_tac x=R' in spec) | |
| 208 | apply (drule fresh_newn, simp+, clarify) | |
| 209 | apply (drule_tac x=k in spec) | |
| 210 | apply (drule_tac x=s' in spec) | |
| 67613 | 211 | apply (subgoal_tac "apm' s' R' \<in> parts (spies (evs2 @ ap' s' R' # evs1))") | 
| 13508 | 212 | apply (case_tac R', drule has_only_Says'D, simp, clarsimp) | 
| 213 | apply (case_tac R', drule has_only_Says'D, simp, clarsimp) | |
| 214 | apply (rule_tac Y="apm s' X" in parts_parts, blast) | |
| 215 | by (rule parts.Inj, rule Says_imp_spies, simp, blast) | |
| 216 | ||
| 61830 | 217 | subsection\<open>safe keys\<close> | 
| 13508 | 218 | |
| 67613 | 219 | definition safe :: "key set \<Rightarrow> msg set \<Rightarrow> bool" where | 
| 220 | "safe Ks G \<equiv> \<forall>K. K \<in> Ks \<longrightarrow> Key K \<notin> analz G" | |
| 13508 | 221 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 222 | lemma safeD [dest]: "\<lbrakk>safe Ks G; K \<in> Ks\<rbrakk> \<Longrightarrow> Key K \<notin> analz G" | 
| 76289 | 223 | unfolding safe_def by blast | 
| 13508 | 224 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 225 | lemma safe_insert: "safe Ks (insert X G) \<Longrightarrow> safe Ks G" | 
| 76289 | 226 | unfolding safe_def by blast | 
| 13508 | 227 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 228 | lemma Guard_safe: "\<lbrakk>Guard n Ks G; safe Ks G\<rbrakk> \<Longrightarrow> Nonce n \<notin> analz G" | 
| 13508 | 229 | by (blast dest: Guard_invKey) | 
| 230 | ||
| 61830 | 231 | subsection\<open>guardedness preservation\<close> | 
| 13508 | 232 | |
| 67613 | 233 | definition preserv :: "proto \<Rightarrow> keyfun \<Rightarrow> nat \<Rightarrow> key set \<Rightarrow> bool" where | 
| 234 | "preserv p keys n Ks \<equiv> (\<forall>evs R' s' R s. evs \<in> tr p \<longrightarrow> | |
| 235 | Guard n Ks (spies evs) \<longrightarrow> safe Ks (spies evs) \<longrightarrow> fresh p R' s' n Ks evs \<longrightarrow> | |
| 236 | keys R' s' n evs \<subseteq> Ks \<longrightarrow> R \<in> p \<longrightarrow> ok evs R s \<longrightarrow> apm' s R \<in> guard n Ks)" | |
| 13508 | 237 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 238 | lemma preservD: "\<lbrakk>preserv p keys n Ks; evs \<in> tr p; Guard n Ks (spies evs); | 
| 67613 | 239 | safe Ks (spies evs); fresh p R' s' n Ks evs; R \<in> p; ok evs R s; | 
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 240 | keys R' s' n evs \<subseteq> Ks\<rbrakk> \<Longrightarrow> apm' s R \<in> guard n Ks" | 
| 76289 | 241 | unfolding preserv_def by blast | 
| 13508 | 242 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 243 | lemma preservD': "\<lbrakk>preserv p keys n Ks; evs \<in> tr p; Guard n Ks (spies evs); | 
| 67613 | 244 | safe Ks (spies evs); fresh p R' s' n Ks evs; (l,Says A B X) \<in> p; | 
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 245 | ok evs (l,Says A B X) s; keys R' s' n evs \<subseteq> Ks\<rbrakk> \<Longrightarrow> apm s X \<in> guard n Ks" | 
| 13508 | 246 | by (drule preservD, simp+) | 
| 247 | ||
| 61830 | 248 | subsection\<open>monotonic keyfun\<close> | 
| 13508 | 249 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 250 | definition monoton :: "proto => keyfun => bool" where | 
| 67613 | 251 | "monoton p keys \<equiv> \<forall>R' s' n ev evs. ev # evs \<in> tr p \<longrightarrow> | 
| 252 | keys R' s' n evs \<subseteq> keys R' s' n (ev # evs)" | |
| 13508 | 253 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 254 | lemma monotonD [dest]: "\<lbrakk>keys R' s' n (ev # evs) \<subseteq> Ks; monoton p keys; | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 255 | ev # evs \<in> tr p\<rbrakk> \<Longrightarrow> keys R' s' n evs \<subseteq> Ks" | 
| 76289 | 256 | unfolding monoton_def by blast | 
| 13508 | 257 | |
| 61830 | 258 | subsection\<open>guardedness theorem\<close> | 
| 13508 | 259 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 260 | lemma Guard_tr [rule_format]: "\<lbrakk>evs \<in> tr p; has_only_Says' p; | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 261 | preserv p keys n Ks; monoton p keys; Guard n Ks (initState Spy)\<rbrakk> \<Longrightarrow> | 
| 67613 | 262 | safe Ks (spies evs) \<longrightarrow> fresh p R' s' n Ks evs \<longrightarrow> keys R' s' n evs \<subseteq> Ks \<longrightarrow> | 
| 13508 | 263 | Guard n Ks (spies evs)" | 
| 264 | apply (erule tr.induct) | |
| 265 | (* Nil *) | |
| 266 | apply simp | |
| 267 | (* Fake *) | |
| 268 | apply (clarify, drule freshD, clarsimp) | |
| 269 | apply (case_tac evs2) | |
| 270 | (* evs2 = [] *) | |
| 271 | apply (frule has_only_Says'D, simp) | |
| 272 | apply (clarsimp, blast) | |
| 273 | (* evs2 = aa # list *) | |
| 274 | apply (clarsimp, rule conjI) | |
| 275 | apply (blast dest: safe_insert) | |
| 276 | (* X:guard n Ks *) | |
| 277 | apply (rule in_synth_Guard, simp, rule Guard_analz) | |
| 278 | apply (blast dest: safe_insert) | |
| 279 | apply (drule safe_insert, simp add: safe_def) | |
| 280 | (* Proto *) | |
| 281 | apply (clarify, drule freshD, clarify) | |
| 282 | apply (case_tac evs2) | |
| 283 | (* evs2 = [] *) | |
| 284 | apply (frule has_only_Says'D, simp) | |
| 285 | apply (frule_tac R=R' in has_only_Says'D, simp) | |
| 286 | apply (case_tac R', clarsimp, blast) | |
| 287 | (* evs2 = ab # list *) | |
| 288 | apply (frule has_only_Says'D, simp) | |
| 289 | apply (clarsimp, rule conjI) | |
| 290 | apply (drule Proto, simp+, blast dest: safe_insert) | |
| 291 | (* apm s X:guard n Ks *) | |
| 292 | apply (frule Proto, simp+) | |
| 293 | apply (erule preservD', simp+) | |
| 294 | apply (blast dest: safe_insert) | |
| 295 | apply (blast dest: safe_insert) | |
| 296 | by (blast, simp, simp, blast) | |
| 297 | ||
| 61830 | 298 | subsection\<open>useful properties for guardedness\<close> | 
| 13508 | 299 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 300 | lemma newn_neq_used: "\<lbrakk>Nonce n \<in> used evs; ok evs R s; k \<in> newn R\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 301 | \<Longrightarrow> n \<noteq> nonce s k" | 
| 13508 | 302 | by (auto simp: ok_def) | 
| 303 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 304 | lemma ok_Guard: "\<lbrakk>ok evs R s; Guard n Ks (spies evs); x \<in> fst R; is_Says x\<rbrakk> | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 305 | \<Longrightarrow> apm s (msg x) \<in> parts (spies evs) \<and> apm s (msg x) \<in> guard n Ks" | 
| 13508 | 306 | apply (unfold ok_def is_Says_def, clarify) | 
| 307 | apply (drule_tac x="Says A B X" in spec, simp) | |
| 308 | by (drule Says_imp_spies, auto intro: parts_parts) | |
| 309 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 310 | lemma ok_parts_not_new: "\<lbrakk>Y \<in> parts (spies evs); Nonce (nonce s n) \<in> parts {Y};
 | 
| 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 311 | ok evs R s\<rbrakk> \<Longrightarrow> n \<notin> newn R" | 
| 13508 | 312 | by (auto simp: ok_def dest: not_used_not_spied parts_parts) | 
| 313 | ||
| 61830 | 314 | subsection\<open>unicity\<close> | 
| 13508 | 315 | |
| 67613 | 316 | definition uniq :: "proto \<Rightarrow> secfun \<Rightarrow> bool" where | 
| 317 | "uniq p secret \<equiv> \<forall>evs R R' n n' Ks s s'. R \<in> p \<longrightarrow> R' \<in> p \<longrightarrow> | |
| 318 | n \<in> newn R \<longrightarrow> n' \<in> newn R' \<longrightarrow> nonce s n = nonce s' n' \<longrightarrow> | |
| 319 | Nonce (nonce s n) \<in> parts {apm' s R} \<longrightarrow> Nonce (nonce s n) \<in> parts {apm' s' R'} \<longrightarrow>
 | |
| 320 | apm' s R \<in> guard (nonce s n) Ks \<longrightarrow> apm' s' R' \<in> guard (nonce s n) Ks \<longrightarrow> | |
| 321 | evs \<in> tr p \<longrightarrow> Nonce (nonce s n) \<notin> analz (spies evs) \<longrightarrow> | |
| 322 | secret R n s Ks \<in> parts (spies evs) \<longrightarrow> secret R' n' s' Ks \<in> parts (spies evs) \<longrightarrow> | |
| 13508 | 323 | secret R n s Ks = secret R' n' s' Ks" | 
| 324 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 325 | lemma uniqD: "\<lbrakk>uniq p secret; evs \<in> tr p; R \<in> p; R' \<in> p; n \<in> newn R; n' \<in> newn R'; | 
| 67613 | 326 | nonce s n = nonce s' n'; Nonce (nonce s n) \<notin> analz (spies evs); | 
| 327 | Nonce (nonce s n) \<in> parts {apm' s R}; Nonce (nonce s n) \<in> parts {apm' s' R'};
 | |
| 328 | secret R n s Ks \<in> parts (spies evs); secret R' n' s' Ks \<in> parts (spies evs); | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 329 | apm' s R \<in> guard (nonce s n) Ks; apm' s' R' \<in> guard (nonce s n) Ks\<rbrakk> \<Longrightarrow> | 
| 13508 | 330 | secret R n s Ks = secret R' n' s' Ks" | 
| 76289 | 331 | unfolding uniq_def by blast | 
| 13508 | 332 | |
| 67613 | 333 | definition ord :: "proto \<Rightarrow> (rule \<Rightarrow> rule \<Rightarrow> bool) \<Rightarrow> bool" where | 
| 334 | "ord p inff \<equiv> \<forall>R R'. R \<in> p \<longrightarrow> R' \<in> p \<longrightarrow> \<not> inff R R' \<longrightarrow> inff R' R" | |
| 13508 | 335 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 336 | lemma ordD: "\<lbrakk>ord p inff; \<not> inff R R'; R \<in> p; R' \<in> p\<rbrakk> \<Longrightarrow> inff R' R" | 
| 76289 | 337 | unfolding ord_def by blast | 
| 13508 | 338 | |
| 67613 | 339 | definition uniq' :: "proto \<Rightarrow> (rule \<Rightarrow> rule \<Rightarrow> bool) \<Rightarrow> secfun \<Rightarrow> bool" where | 
| 340 | "uniq' p inff secret \<equiv> \<forall>evs R R' n n' Ks s s'. R \<in> p \<longrightarrow> R' \<in> p \<longrightarrow> | |
| 341 | inff R R' \<longrightarrow> n \<in> newn R \<longrightarrow> n' \<in> newn R' \<longrightarrow> nonce s n = nonce s' n' \<longrightarrow> | |
| 342 | Nonce (nonce s n) \<in> parts {apm' s R} \<longrightarrow> Nonce (nonce s n) \<in> parts {apm' s' R'} \<longrightarrow>
 | |
| 343 | apm' s R \<in> guard (nonce s n) Ks \<longrightarrow> apm' s' R' \<in> guard (nonce s n) Ks \<longrightarrow> | |
| 344 | evs \<in> tr p \<longrightarrow> Nonce (nonce s n) \<notin> analz (spies evs) \<longrightarrow> | |
| 345 | secret R n s Ks \<in> parts (spies evs) \<longrightarrow> secret R' n' s' Ks \<in> parts (spies evs) \<longrightarrow> | |
| 13508 | 346 | secret R n s Ks = secret R' n' s' Ks" | 
| 347 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 348 | lemma uniq'D: "\<lbrakk>uniq' p inff secret; evs \<in> tr p; inff R R'; R \<in> p; R' \<in> p; n \<in> newn R; | 
| 67613 | 349 | n' \<in> newn R'; nonce s n = nonce s' n'; Nonce (nonce s n) \<notin> analz (spies evs); | 
| 350 | Nonce (nonce s n) \<in> parts {apm' s R}; Nonce (nonce s n) \<in> parts {apm' s' R'};
 | |
| 351 | secret R n s Ks \<in> parts (spies evs); secret R' n' s' Ks \<in> parts (spies evs); | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 352 | apm' s R \<in> guard (nonce s n) Ks; apm' s' R' \<in> guard (nonce s n) Ks\<rbrakk> \<Longrightarrow> | 
| 13508 | 353 | secret R n s Ks = secret R' n' s' Ks" | 
| 354 | by (unfold uniq'_def, blast) | |
| 355 | ||
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 356 | lemma uniq'_imp_uniq: "\<lbrakk>uniq' p inff secret; ord p inff\<rbrakk> \<Longrightarrow> uniq p secret" | 
| 76290 
64d29ebb7d3d
Mostly, removing the unfold method
 paulson <lp15@cam.ac.uk> parents: 
76289diff
changeset | 357 | unfolding uniq_def | 
| 13508 | 358 | apply (rule allI)+ | 
| 22426 | 359 | apply (case_tac "inff R R'") | 
| 13508 | 360 | apply (blast dest: uniq'D) | 
| 361 | by (auto dest: ordD uniq'D intro: sym) | |
| 362 | ||
| 61830 | 363 | subsection\<open>Needham-Schroeder-Lowe\<close> | 
| 13508 | 364 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 365 | definition a :: agent where "a == Friend 0" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 366 | definition b :: agent where "b == Friend 1" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 367 | definition a' :: agent where "a' == Friend 2" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 368 | definition b' :: agent where "b' == Friend 3" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 369 | definition Na :: nat where "Na == 0" | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 370 | definition Nb :: nat where "Nb == 1" | 
| 13508 | 371 | |
| 20768 | 372 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 373 | ns1 :: rule where | 
| 61956 | 374 |   "ns1 == ({}, Says a b (Crypt (pubK b) \<lbrace>Nonce Na, Agent a\<rbrace>))"
 | 
| 13508 | 375 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 376 | abbreviation | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 377 | ns2 :: rule where | 
| 61956 | 378 |   "ns2 == ({Says a' b (Crypt (pubK b) \<lbrace>Nonce Na, Agent a\<rbrace>)},
 | 
| 379 | Says b a (Crypt (pubK a) \<lbrace>Nonce Na, Nonce Nb, Agent b\<rbrace>))" | |
| 13508 | 380 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 381 | abbreviation | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 382 | ns3 :: rule where | 
| 61956 | 383 |   "ns3 == ({Says a b (Crypt (pubK b) \<lbrace>Nonce Na, Agent a\<rbrace>),
 | 
| 384 | Says b' a (Crypt (pubK a) \<lbrace>Nonce Na, Nonce Nb, Agent b\<rbrace>)}, | |
| 20768 | 385 | Says a b (Crypt (pubK b) (Nonce Nb)))" | 
| 13508 | 386 | |
| 23746 | 387 | inductive_set ns :: proto where | 
| 67613 | 388 | [iff]: "ns1 \<in> ns" | 
| 389 | | [iff]: "ns2 \<in> ns" | |
| 390 | | [iff]: "ns3 \<in> ns" | |
| 13508 | 391 | |
| 20768 | 392 | abbreviation (input) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 393 | ns3a :: event where | 
| 61956 | 394 | "ns3a == Says a b (Crypt (pubK b) \<lbrace>Nonce Na, Agent a\<rbrace>)" | 
| 13508 | 395 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 396 | abbreviation (input) | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20768diff
changeset | 397 | ns3b :: event where | 
| 61956 | 398 | "ns3b == Says b' a (Crypt (pubK a) \<lbrace>Nonce Na, Nonce Nb, Agent b\<rbrace>)" | 
| 13508 | 399 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 400 | definition keys :: "keyfun" where | 
| 13508 | 401 | "keys R' s' n evs == {priK' s' a, priK' s' b}"
 | 
| 402 | ||
| 403 | lemma "monoton ns keys" | |
| 404 | by (simp add: keys_def monoton_def) | |
| 405 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 406 | definition secret :: "secfun" where | 
| 13508 | 407 | "secret R n s Ks == | 
| 61956 | 408 | (if R=ns1 then apm s (Crypt (pubK b) \<lbrace>Nonce Na, Agent a\<rbrace>) | 
| 409 | else if R=ns2 then apm s (Crypt (pubK a) \<lbrace>Nonce Na, Nonce Nb, Agent b\<rbrace>) | |
| 13508 | 410 | else Number 0)" | 
| 411 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 412 | definition inf :: "rule => rule => bool" where | 
| 13508 | 413 | "inf R R' == (R=ns1 | (R=ns2 & R'~=ns1) | (R=ns3 & R'=ns3))" | 
| 414 | ||
| 415 | lemma inf_is_ord [iff]: "ord ns inf" | |
| 416 | apply (unfold ord_def inf_def) | |
| 417 | apply (rule allI)+ | |
| 23746 | 418 | apply (rule impI) | 
| 419 | apply (simp add: split_paired_all) | |
| 13508 | 420 | by (rule impI, erule ns.cases, simp_all)+ | 
| 421 | ||
| 61830 | 422 | subsection\<open>general properties\<close> | 
| 13508 | 423 | |
| 424 | lemma ns_has_only_Says' [iff]: "has_only_Says' ns" | |
| 425 | apply (unfold has_only_Says'_def) | |
| 426 | apply (rule allI, rule impI) | |
| 23746 | 427 | apply (simp add: split_paired_all) | 
| 13508 | 428 | by (erule ns.cases, auto) | 
| 429 | ||
| 430 | lemma newn_ns1 [iff]: "newn ns1 = {Na}"
 | |
| 431 | by (simp add: newn_def) | |
| 432 | ||
| 433 | lemma newn_ns2 [iff]: "newn ns2 = {Nb}"
 | |
| 434 | by (auto simp: newn_def Na_def Nb_def) | |
| 435 | ||
| 436 | lemma newn_ns3 [iff]: "newn ns3 = {}"
 | |
| 437 | by (auto simp: newn_def) | |
| 438 | ||
| 439 | lemma ns_wdef [iff]: "wdef ns" | |
| 440 | by (auto simp: wdef_def elim: ns.cases) | |
| 441 | ||
| 61830 | 442 | subsection\<open>guardedness for NSL\<close> | 
| 13508 | 443 | |
| 76287 
cdc14f94c754
Elimination of the archaic ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 444 | lemma "uniq ns secret \<Longrightarrow> preserv ns keys n Ks" | 
| 76290 
64d29ebb7d3d
Mostly, removing the unfold method
 paulson <lp15@cam.ac.uk> parents: 
76289diff
changeset | 445 | unfolding preserv_def | 
| 13508 | 446 | apply (rule allI)+ | 
| 447 | apply (rule impI, rule impI, rule impI, rule impI, rule impI) | |
| 448 | apply (erule fresh_ruleD, simp, simp, simp, simp) | |
| 449 | apply (rule allI)+ | |
| 450 | apply (rule impI, rule impI, rule impI) | |
| 23746 | 451 | apply (simp add: split_paired_all) | 
| 13508 | 452 | apply (erule ns.cases) | 
| 453 | (* fresh with NS1 *) | |
| 454 | apply (rule impI, rule impI, rule impI, rule impI, rule impI, rule impI) | |
| 455 | apply (erule ns.cases) | |
| 456 | (* NS1 *) | |
| 457 | apply clarsimp | |
| 458 | apply (frule newn_neq_used, simp, simp) | |
| 459 | apply (rule No_Nonce, simp) | |
| 460 | (* NS2 *) | |
| 461 | apply clarsimp | |
| 462 | apply (frule newn_neq_used, simp, simp) | |
| 463 | apply (case_tac "nonce sa Na = nonce s Na") | |
| 464 | apply (frule Guard_safe, simp) | |
| 465 | apply (frule Crypt_guard_invKey, simp) | |
| 466 | apply (frule ok_Guard, simp, simp, simp, clarsimp) | |
| 467 | apply (frule_tac K="pubK' s b" in Crypt_guard_invKey, simp) | |
| 468 | apply (frule_tac R=ns1 and R'=ns1 and Ks=Ks and s=sa and s'=s in uniqD, simp+) | |
| 469 | apply (simp add: secret_def, simp add: secret_def, force, force) | |
| 470 | apply (simp add: secret_def keys_def, blast) | |
| 471 | apply (rule No_Nonce, simp) | |
| 472 | (* NS3 *) | |
| 473 | apply clarsimp | |
| 474 | apply (case_tac "nonce sa Na = nonce s Nb") | |
| 475 | apply (frule Guard_safe, simp) | |
| 476 | apply (frule Crypt_guard_invKey, simp) | |
| 477 | apply (frule_tac x=ns3b in ok_Guard, simp, simp, simp, clarsimp) | |
| 478 | apply (frule_tac K="pubK' s a" in Crypt_guard_invKey, simp) | |
| 479 | apply (frule_tac R=ns1 and R'=ns2 and Ks=Ks and s=sa and s'=s in uniqD, simp+) | |
| 480 | apply (simp add: secret_def, simp add: secret_def, force, force) | |
| 481 | apply (simp add: secret_def, rule No_Nonce, simp) | |
| 482 | (* fresh with NS2 *) | |
| 483 | apply (rule impI, rule impI, rule impI, rule impI, rule impI, rule impI) | |
| 484 | apply (erule ns.cases) | |
| 485 | (* NS1 *) | |
| 486 | apply clarsimp | |
| 487 | apply (frule newn_neq_used, simp, simp) | |
| 488 | apply (rule No_Nonce, simp) | |
| 489 | (* NS2 *) | |
| 490 | apply clarsimp | |
| 491 | apply (frule newn_neq_used, simp, simp) | |
| 492 | apply (case_tac "nonce sa Nb = nonce s Na") | |
| 493 | apply (frule Guard_safe, simp) | |
| 494 | apply (frule Crypt_guard_invKey, simp) | |
| 495 | apply (frule ok_Guard, simp, simp, simp, clarsimp) | |
| 496 | apply (frule_tac K="pubK' s b" in Crypt_guard_invKey, simp) | |
| 497 | apply (frule_tac R=ns2 and R'=ns1 and Ks=Ks and s=sa and s'=s in uniqD, simp+) | |
| 498 | apply (simp add: secret_def, simp add: secret_def, force, force) | |
| 499 | apply (simp add: secret_def, rule No_Nonce, simp) | |
| 500 | (* NS3 *) | |
| 501 | apply clarsimp | |
| 502 | apply (case_tac "nonce sa Nb = nonce s Nb") | |
| 503 | apply (frule Guard_safe, simp) | |
| 504 | apply (frule Crypt_guard_invKey, simp) | |
| 505 | apply (frule_tac x=ns3b in ok_Guard, simp, simp, simp, clarsimp) | |
| 506 | apply (frule_tac K="pubK' s a" in Crypt_guard_invKey, simp) | |
| 507 | apply (frule_tac R=ns2 and R'=ns2 and Ks=Ks and s=sa and s'=s in uniqD, simp+) | |
| 508 | apply (simp add: secret_def, simp add: secret_def, force, force) | |
| 509 | apply (simp add: secret_def keys_def, blast) | |
| 510 | apply (rule No_Nonce, simp) | |
| 511 | (* fresh with NS3 *) | |
| 512 | by simp | |
| 513 | ||
| 61830 | 514 | subsection\<open>unicity for NSL\<close> | 
| 13508 | 515 | |
| 516 | lemma "uniq' ns inf secret" | |
| 517 | apply (unfold uniq'_def) | |
| 518 | apply (rule allI)+ | |
| 23746 | 519 | apply (simp add: split_paired_all) | 
| 13508 | 520 | apply (rule impI, erule ns.cases) | 
| 521 | (* R = ns1 *) | |
| 522 | apply (rule impI, erule ns.cases) | |
| 523 | (* R' = ns1 *) | |
| 524 | apply (rule impI, rule impI, rule impI, rule impI) | |
| 525 | apply (rule impI, rule impI, rule impI, rule impI) | |
| 526 | apply (rule impI, erule tr.induct) | |
| 527 | (* Nil *) | |
| 528 | apply (simp add: secret_def) | |
| 529 | (* Fake *) | |
| 530 | apply (clarify, simp add: secret_def) | |
| 531 | apply (drule notin_analz_insert) | |
| 532 | apply (drule Crypt_insert_synth, simp, simp, simp) | |
| 533 | apply (drule Crypt_insert_synth, simp, simp, simp, simp) | |
| 534 | (* Proto *) | |
| 23746 | 535 | apply (erule_tac P="ok evsa R sa" in rev_mp) | 
| 536 | apply (simp add: split_paired_all) | |
| 13508 | 537 | apply (erule ns.cases) | 
| 538 | (* ns1 *) | |
| 539 | apply (clarify, simp add: secret_def) | |
| 540 | apply (erule disjE, erule disjE, clarsimp) | |
| 541 | apply (drule ok_parts_not_new, simp, simp, simp) | |
| 542 | apply (clarify, drule ok_parts_not_new, simp, simp, simp) | |
| 543 | (* ns2 *) | |
| 544 | apply (simp add: secret_def) | |
| 545 | (* ns3 *) | |
| 546 | apply (simp add: secret_def) | |
| 547 | (* R' = ns2 *) | |
| 548 | apply (rule impI, rule impI, rule impI, rule impI) | |
| 549 | apply (rule impI, rule impI, rule impI, rule impI) | |
| 550 | apply (rule impI, erule tr.induct) | |
| 551 | (* Nil *) | |
| 552 | apply (simp add: secret_def) | |
| 553 | (* Fake *) | |
| 554 | apply (clarify, simp add: secret_def) | |
| 555 | apply (drule notin_analz_insert) | |
| 556 | apply (drule Crypt_insert_synth, simp, simp, simp) | |
| 557 | apply (drule_tac n="nonce s' Nb" in Crypt_insert_synth, simp, simp, simp, simp) | |
| 558 | (* Proto *) | |
| 23746 | 559 | apply (erule_tac P="ok evsa R sa" in rev_mp) | 
| 560 | apply (simp add: split_paired_all) | |
| 13508 | 561 | apply (erule ns.cases) | 
| 562 | (* ns1 *) | |
| 563 | apply (clarify, simp add: secret_def) | |
| 564 | apply (drule_tac s=sa and n=Na in ok_parts_not_new, simp, simp, simp) | |
| 565 | (* ns2 *) | |
| 566 | apply (clarify, simp add: secret_def) | |
| 567 | apply (drule_tac s=sa and n=Nb in ok_parts_not_new, simp, simp, simp) | |
| 568 | (* ns3 *) | |
| 569 | apply (simp add: secret_def) | |
| 570 | (* R' = ns3 *) | |
| 571 | apply simp | |
| 572 | (* R = ns2 *) | |
| 573 | apply (rule impI, erule ns.cases) | |
| 574 | (* R' = ns1 *) | |
| 575 | apply (simp only: inf_def, blast) | |
| 576 | (* R' = ns2 *) | |
| 577 | apply (rule impI, rule impI, rule impI, rule impI) | |
| 578 | apply (rule impI, rule impI, rule impI, rule impI) | |
| 579 | apply (rule impI, erule tr.induct) | |
| 580 | (* Nil *) | |
| 581 | apply (simp add: secret_def) | |
| 582 | (* Fake *) | |
| 583 | apply (clarify, simp add: secret_def) | |
| 584 | apply (drule notin_analz_insert) | |
| 585 | apply (drule_tac n="nonce s' Nb" in Crypt_insert_synth, simp, simp, simp) | |
| 586 | apply (drule_tac n="nonce s' Nb" in Crypt_insert_synth, simp, simp, simp, simp) | |
| 587 | (* Proto *) | |
| 23746 | 588 | apply (erule_tac P="ok evsa R sa" in rev_mp) | 
| 589 | apply (simp add: split_paired_all) | |
| 13508 | 590 | apply (erule ns.cases) | 
| 591 | (* ns1 *) | |
| 592 | apply (simp add: secret_def) | |
| 593 | (* ns2 *) | |
| 594 | apply (clarify, simp add: secret_def) | |
| 595 | apply (erule disjE, erule disjE, clarsimp, clarsimp) | |
| 596 | apply (drule_tac s=sa and n=Nb in ok_parts_not_new, simp, simp, simp) | |
| 597 | apply (erule disjE, clarsimp) | |
| 598 | apply (drule_tac s=sa and n=Nb in ok_parts_not_new, simp, simp, simp) | |
| 599 | by (simp_all add: secret_def) | |
| 600 | ||
| 601 | end |