| author | paulson | 
| Tue, 11 Jul 2023 20:22:08 +0100 | |
| changeset 78321 | 021fb1b01de5 | 
| parent 68451 | c34aa23a1fb6 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 11376 | 1 | (* Title: HOL/NanoJava/TypeRel.thy | 
| 41589 | 2 | Author: David von Oheimb, Technische Universitaet Muenchen | 
| 11376 | 3 | *) | 
| 4 | ||
| 58889 | 5 | section "Type relations" | 
| 11376 | 6 | |
| 55017 | 7 | theory TypeRel | 
| 8 | imports Decl | |
| 9 | begin | |
| 11376 | 10 | |
| 63167 | 11 | text\<open>Direct subclass relation\<close> | 
| 44375 | 12 | |
| 13 | definition subcls1 :: "(cname \<times> cname) set" | |
| 14 | where | |
| 15 |   "subcls1 \<equiv> {(C,D). C\<noteq>Object \<and> (\<exists>c. class C = Some c \<and> super c=D)}"
 | |
| 11376 | 16 | |
| 35102 | 17 | abbreviation | 
| 61990 | 18 |   subcls1_syntax :: "[cname, cname] => bool"  ("_ \<prec>C1 _" [71,71] 70)
 | 
| 19 | where "C \<prec>C1 D == (C,D) \<in> subcls1" | |
| 35102 | 20 | abbreviation | 
| 61990 | 21 |   subcls_syntax  :: "[cname, cname] => bool" ("_ \<preceq>C _"  [71,71] 70)
 | 
| 67613 | 22 | where "C \<preceq>C D \<equiv> (C,D) \<in> subcls1\<^sup>*" | 
| 11376 | 23 | |
| 24 | ||
| 11565 | 25 | subsection "Declarations and properties not used in the meta theory" | 
| 11376 | 26 | |
| 63167 | 27 | text\<open>Widening, viz. method invocation conversion\<close> | 
| 23755 | 28 | inductive | 
| 29 |   widen :: "ty => ty => bool"  ("_ \<preceq> _" [71,71] 70)
 | |
| 30 | where | |
| 31 | refl [intro!, simp]: "T \<preceq> T" | |
| 32 | | subcls: "C\<preceq>C D \<Longrightarrow> Class C \<preceq> Class D" | |
| 33 | | null [intro!]: "NT \<preceq> R" | |
| 11376 | 34 | |
| 35 | lemma subcls1D: | |
| 36 | "C\<prec>C1D \<Longrightarrow> C \<noteq> Object \<and> (\<exists>c. class C = Some c \<and> super c=D)" | |
| 37 | apply (unfold subcls1_def) | |
| 38 | apply auto | |
| 39 | done | |
| 40 | ||
| 41 | lemma subcls1I: "\<lbrakk>class C = Some m; super m = D; C \<noteq> Object\<rbrakk> \<Longrightarrow> C\<prec>C1D" | |
| 42 | apply (unfold subcls1_def) | |
| 43 | apply auto | |
| 44 | done | |
| 45 | ||
| 46 | lemma subcls1_def2: | |
| 14952 
47455995693d
removal of x-symbol syntax <Sigma> for dependent products
 paulson parents: 
14171diff
changeset | 47 | "subcls1 = | 
| 
47455995693d
removal of x-symbol syntax <Sigma> for dependent products
 paulson parents: 
14171diff
changeset | 48 |     (SIGMA C: {C. is_class C} . {D. C\<noteq>Object \<and> super (the (class C)) = D})"
 | 
| 11376 | 49 | apply (unfold subcls1_def is_class_def) | 
| 62390 | 50 | apply (auto split:if_split_asm) | 
| 11376 | 51 | done | 
| 52 | ||
| 53 | lemma finite_subcls1: "finite subcls1" | |
| 54 | apply(subst subcls1_def2) | |
| 55 | apply(rule finite_SigmaI [OF finite_is_class]) | |
| 56 | apply(rule_tac B = "{super (the (class C))}" in finite_subset)
 | |
| 57 | apply auto | |
| 58 | done | |
| 59 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35102diff
changeset | 60 | definition ws_prog :: "bool" where | 
| 11376 | 61 | "ws_prog \<equiv> \<forall>(C,c)\<in>set Prog. C\<noteq>Object \<longrightarrow> | 
| 67613 | 62 | is_class (super c) \<and> (super c,C)\<notin>subcls1\<^sup>+" | 
| 11376 | 63 | |
| 64 | lemma ws_progD: "\<lbrakk>class C = Some c; C\<noteq>Object; ws_prog\<rbrakk> \<Longrightarrow> | |
| 67613 | 65 | is_class (super c) \<and> (super c,C)\<notin>subcls1\<^sup>+" | 
| 11376 | 66 | apply (unfold ws_prog_def class_def) | 
| 67 | apply (drule_tac map_of_SomeD) | |
| 68 | apply auto | |
| 69 | done | |
| 70 | ||
| 67613 | 71 | lemma subcls1_irrefl_lemma1: "ws_prog \<Longrightarrow> subcls1\<inverse> \<inter> subcls1\<^sup>+ = {}"
 | 
| 11376 | 72 | by (fast dest: subcls1D ws_progD) | 
| 73 | ||
| 13867 | 74 | (* irrefl_tranclI in Transitive_Closure.thy is more general *) | 
| 67613 | 75 | lemma irrefl_tranclI': "r\<inverse> \<inter> r\<^sup>+ = {} \<Longrightarrow> \<forall>x. (x, x) \<notin> r\<^sup>+"
 | 
| 13867 | 76 | by(blast elim: tranclE dest: trancl_into_rtrancl) | 
| 77 | ||
| 11376 | 78 | |
| 79 | lemmas subcls1_irrefl_lemma2 = subcls1_irrefl_lemma1 [THEN irrefl_tranclI'] | |
| 80 | ||
| 81 | lemma subcls1_irrefl: "\<lbrakk>(x, y) \<in> subcls1; ws_prog\<rbrakk> \<Longrightarrow> x \<noteq> y" | |
| 82 | apply (rule irrefl_trancl_rD) | |
| 83 | apply (rule subcls1_irrefl_lemma2) | |
| 84 | apply auto | |
| 85 | done | |
| 86 | ||
| 45605 | 87 | lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI] | 
| 11376 | 88 | |
| 89 | lemma wf_subcls1: "ws_prog \<Longrightarrow> wf (subcls1\<inverse>)" | |
| 90 | by (auto intro: finite_acyclic_wf_converse finite_subcls1 subcls1_acyclic) | |
| 91 | ||
| 44146 | 92 | definition class_rec ::"cname \<Rightarrow> (class \<Rightarrow> ('a \<times> 'b) list) \<Rightarrow> ('a \<rightharpoonup> 'b)"
 | 
| 93 | where | |
| 94 | "class_rec \<equiv> wfrec (subcls1\<inverse>) (\<lambda>rec C f. | |
| 95 | case class C of None \<Rightarrow> undefined | |
| 68451 | 96 | | Some m \<Rightarrow> (if C = Object then Map.empty else rec (super m) f) ++ map_of (f m))" | 
| 11376 | 97 | |
| 98 | lemma class_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> | |
| 68451 | 99 | class_rec C f = (if C = Object then Map.empty else class_rec (super m) f) ++ | 
| 44146 | 100 | map_of (f m)" | 
| 11376 | 101 | apply (drule wf_subcls1) | 
| 44146 | 102 | apply (subst def_wfrec[OF class_rec_def], auto) | 
| 103 | apply (subst cut_apply, auto intro: subcls1I) | |
| 11376 | 104 | done | 
| 105 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63167diff
changeset | 106 | \<comment> \<open>Methods of a class, with inheritance and hiding\<close> | 
| 59682 
d662d096f72b
quote "method" to allow Eisbach using this keyword;
 wenzelm parents: 
58889diff
changeset | 107 | definition "method" :: "cname => (mname \<rightharpoonup> methd)" where | 
| 44375 | 108 | "method C \<equiv> class_rec C methods" | 
| 11376 | 109 | |
| 110 | lemma method_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> | |
| 68451 | 111 | method C = (if C=Object then Map.empty else method (super m)) ++ map_of (methods m)" | 
| 11376 | 112 | apply (unfold method_def) | 
| 58860 | 113 | apply (erule (1) class_rec [THEN trans]) | 
| 11376 | 114 | apply simp | 
| 115 | done | |
| 116 | ||
| 117 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
63167diff
changeset | 118 | \<comment> \<open>Fields of a class, with inheritance and hiding\<close> | 
| 44375 | 119 | definition field :: "cname => (fname \<rightharpoonup> ty)" where | 
| 120 | "field C \<equiv> class_rec C flds" | |
| 11376 | 121 | |
| 12264 
9c356e2da72f
renamed "fields" to "flds" (avoid clash with new "fields" operation);
 wenzelm parents: 
11626diff
changeset | 122 | lemma flds_rec: "\<lbrakk>class C = Some m; ws_prog\<rbrakk> \<Longrightarrow> | 
| 68451 | 123 | field C = (if C=Object then Map.empty else field (super m)) ++ map_of (flds m)" | 
| 11376 | 124 | apply (unfold field_def) | 
| 58860 | 125 | apply (erule (1) class_rec [THEN trans]) | 
| 11376 | 126 | apply simp | 
| 127 | done | |
| 128 | ||
| 129 | end |