author | wenzelm |
Tue, 27 Jul 1999 22:04:30 +0200 | |
changeset 7108 | 0229ce6735f6 |
parent 5033 | 06f03dc5a1dc |
child 9245 | 428385c4bc50 |
permissions | -rw-r--r-- |
2640 | 1 |
(* Title: HOLCF/Sprod3.thy |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1461 | 3 |
Author: Franz Regensburger |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
2640 | 6 |
Lemmas for Sprod.thy |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
open Sprod3; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
2640 | 11 |
(* for compatibility with old HOLCF-Version *) |
12 |
qed_goal "inst_sprod_pcpo" thy "UU = Ispair UU UU" |
|
13 |
(fn prems => |
|
14 |
[ |
|
15 |
(simp_tac (HOL_ss addsimps [UU_def,UU_sprod_def]) 1) |
|
16 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
17 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
18 |
(* continuity of Ispair, Isfst, Issnd *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
19 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
20 |
|
2640 | 21 |
qed_goal "sprod3_lemma1" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
22 |
"[| chain(Y); x~= UU; lub(range(Y))~= UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
23 |
\ Ispair (lub(range Y)) x =\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
24 |
\ Ispair (lub(range(%i. Isfst(Ispair(Y i) x)))) \ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
25 |
\ (lub(range(%i. Issnd(Ispair(Y i) x))))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
26 |
(fn prems => |
1461 | 27 |
[ |
28 |
(cut_facts_tac prems 1), |
|
29 |
(res_inst_tac [("f1","Ispair")] (arg_cong RS cong) 1), |
|
30 |
(rtac lub_equal 1), |
|
31 |
(atac 1), |
|
32 |
(rtac (monofun_Isfst RS ch2ch_monofun) 1), |
|
33 |
(rtac ch2ch_fun 1), |
|
34 |
(rtac (monofun_Ispair1 RS ch2ch_monofun) 1), |
|
35 |
(atac 1), |
|
36 |
(rtac allI 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
37 |
(asm_simp_tac Sprod0_ss 1), |
1461 | 38 |
(rtac sym 1), |
39 |
(rtac lub_chain_maxelem 1), |
|
40 |
(res_inst_tac [("P","%j.~Y(j)=UU")] exE 1), |
|
1675 | 41 |
(rtac (not_all RS iffD1) 1), |
1461 | 42 |
(res_inst_tac [("Q","lub(range(Y)) = UU")] contrapos 1), |
43 |
(atac 1), |
|
44 |
(rtac chain_UU_I_inverse 1), |
|
45 |
(atac 1), |
|
46 |
(rtac exI 1), |
|
47 |
(etac Issnd2 1), |
|
48 |
(rtac allI 1), |
|
49 |
(res_inst_tac [("Q","Y(i)=UU")] (excluded_middle RS disjE) 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
50 |
(asm_simp_tac Sprod0_ss 1), |
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
51 |
(rtac refl_less 1), |
1461 | 52 |
(res_inst_tac [("s","UU"),("t","Y(i)")] subst 1), |
53 |
(etac sym 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
54 |
(asm_simp_tac Sprod0_ss 1), |
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
55 |
(rtac minimal 1) |
1461 | 56 |
]); |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
57 |
|
2640 | 58 |
qed_goal "sprod3_lemma2" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
59 |
"[| chain(Y); x ~= UU; lub(range(Y)) = UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
60 |
\ Ispair (lub(range Y)) x =\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
61 |
\ Ispair (lub(range(%i. Isfst(Ispair(Y i) x))))\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
62 |
\ (lub(range(%i. Issnd(Ispair(Y i) x))))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
63 |
(fn prems => |
1461 | 64 |
[ |
65 |
(cut_facts_tac prems 1), |
|
66 |
(res_inst_tac [("s","UU"),("t","lub(range(Y))")] ssubst 1), |
|
67 |
(atac 1), |
|
68 |
(rtac trans 1), |
|
69 |
(rtac strict_Ispair1 1), |
|
70 |
(rtac (strict_Ispair RS sym) 1), |
|
71 |
(rtac disjI1 1), |
|
72 |
(rtac chain_UU_I_inverse 1), |
|
73 |
(rtac allI 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
74 |
(asm_simp_tac Sprod0_ss 1), |
1461 | 75 |
(etac (chain_UU_I RS spec) 1), |
76 |
(atac 1) |
|
77 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
78 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
79 |
|
2640 | 80 |
qed_goal "sprod3_lemma3" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
81 |
"[| chain(Y); x = UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
82 |
\ Ispair (lub(range Y)) x =\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
83 |
\ Ispair (lub(range(%i. Isfst(Ispair (Y i) x))))\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
84 |
\ (lub(range(%i. Issnd(Ispair (Y i) x))))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
85 |
(fn prems => |
1461 | 86 |
[ |
87 |
(cut_facts_tac prems 1), |
|
88 |
(res_inst_tac [("s","UU"),("t","x")] ssubst 1), |
|
89 |
(atac 1), |
|
90 |
(rtac trans 1), |
|
91 |
(rtac strict_Ispair2 1), |
|
92 |
(rtac (strict_Ispair RS sym) 1), |
|
93 |
(rtac disjI1 1), |
|
94 |
(rtac chain_UU_I_inverse 1), |
|
95 |
(rtac allI 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
96 |
(simp_tac Sprod0_ss 1) |
1461 | 97 |
]); |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
98 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
99 |
|
2640 | 100 |
qed_goal "contlub_Ispair1" thy "contlub(Ispair)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
101 |
(fn prems => |
1461 | 102 |
[ |
103 |
(rtac contlubI 1), |
|
104 |
(strip_tac 1), |
|
105 |
(rtac (expand_fun_eq RS iffD2) 1), |
|
106 |
(strip_tac 1), |
|
2033 | 107 |
(stac (lub_fun RS thelubI) 1), |
1461 | 108 |
(etac (monofun_Ispair1 RS ch2ch_monofun) 1), |
109 |
(rtac trans 1), |
|
110 |
(rtac (thelub_sprod RS sym) 2), |
|
111 |
(rtac ch2ch_fun 2), |
|
112 |
(etac (monofun_Ispair1 RS ch2ch_monofun) 2), |
|
113 |
(res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1), |
|
114 |
(res_inst_tac |
|
115 |
[("Q","lub(range(Y))=UU")] (excluded_middle RS disjE) 1), |
|
116 |
(etac sprod3_lemma1 1), |
|
117 |
(atac 1), |
|
118 |
(atac 1), |
|
119 |
(etac sprod3_lemma2 1), |
|
120 |
(atac 1), |
|
121 |
(atac 1), |
|
122 |
(etac sprod3_lemma3 1), |
|
123 |
(atac 1) |
|
124 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
125 |
|
2640 | 126 |
qed_goal "sprod3_lemma4" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
127 |
"[| chain(Y); x ~= UU; lub(range(Y)) ~= UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
128 |
\ Ispair x (lub(range Y)) =\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
129 |
\ Ispair (lub(range(%i. Isfst (Ispair x (Y i)))))\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
130 |
\ (lub(range(%i. Issnd (Ispair x (Y i)))))" |
1043 | 131 |
(fn prems => |
1461 | 132 |
[ |
133 |
(cut_facts_tac prems 1), |
|
134 |
(res_inst_tac [("f1","Ispair")] (arg_cong RS cong) 1), |
|
135 |
(rtac sym 1), |
|
136 |
(rtac lub_chain_maxelem 1), |
|
3842 | 137 |
(res_inst_tac [("P","%j. Y(j)~=UU")] exE 1), |
1675 | 138 |
(rtac (not_all RS iffD1) 1), |
1461 | 139 |
(res_inst_tac [("Q","lub(range(Y)) = UU")] contrapos 1), |
140 |
(atac 1), |
|
141 |
(rtac chain_UU_I_inverse 1), |
|
142 |
(atac 1), |
|
143 |
(rtac exI 1), |
|
144 |
(etac Isfst2 1), |
|
145 |
(rtac allI 1), |
|
146 |
(res_inst_tac [("Q","Y(i)=UU")] (excluded_middle RS disjE) 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
147 |
(asm_simp_tac Sprod0_ss 1), |
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
148 |
(rtac refl_less 1), |
1461 | 149 |
(res_inst_tac [("s","UU"),("t","Y(i)")] subst 1), |
150 |
(etac sym 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
151 |
(asm_simp_tac Sprod0_ss 1), |
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
152 |
(rtac minimal 1), |
1461 | 153 |
(rtac lub_equal 1), |
154 |
(atac 1), |
|
155 |
(rtac (monofun_Issnd RS ch2ch_monofun) 1), |
|
156 |
(rtac (monofun_Ispair2 RS ch2ch_monofun) 1), |
|
157 |
(atac 1), |
|
158 |
(rtac allI 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
159 |
(asm_simp_tac Sprod0_ss 1) |
1461 | 160 |
]); |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
161 |
|
2640 | 162 |
qed_goal "sprod3_lemma5" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
163 |
"[| chain(Y); x ~= UU; lub(range(Y)) = UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
164 |
\ Ispair x (lub(range Y)) =\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
165 |
\ Ispair (lub(range(%i. Isfst(Ispair x (Y i)))))\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
166 |
\ (lub(range(%i. Issnd(Ispair x (Y i)))))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
167 |
(fn prems => |
1461 | 168 |
[ |
169 |
(cut_facts_tac prems 1), |
|
170 |
(res_inst_tac [("s","UU"),("t","lub(range(Y))")] ssubst 1), |
|
171 |
(atac 1), |
|
172 |
(rtac trans 1), |
|
173 |
(rtac strict_Ispair2 1), |
|
174 |
(rtac (strict_Ispair RS sym) 1), |
|
175 |
(rtac disjI2 1), |
|
176 |
(rtac chain_UU_I_inverse 1), |
|
177 |
(rtac allI 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
178 |
(asm_simp_tac Sprod0_ss 1), |
1461 | 179 |
(etac (chain_UU_I RS spec) 1), |
180 |
(atac 1) |
|
181 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
182 |
|
2640 | 183 |
qed_goal "sprod3_lemma6" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
184 |
"[| chain(Y); x = UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
185 |
\ Ispair x (lub(range Y)) =\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
186 |
\ Ispair (lub(range(%i. Isfst (Ispair x (Y i)))))\ |
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
187 |
\ (lub(range(%i. Issnd (Ispair x (Y i)))))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
188 |
(fn prems => |
1461 | 189 |
[ |
190 |
(cut_facts_tac prems 1), |
|
191 |
(res_inst_tac [("s","UU"),("t","x")] ssubst 1), |
|
192 |
(atac 1), |
|
193 |
(rtac trans 1), |
|
194 |
(rtac strict_Ispair1 1), |
|
195 |
(rtac (strict_Ispair RS sym) 1), |
|
196 |
(rtac disjI1 1), |
|
197 |
(rtac chain_UU_I_inverse 1), |
|
198 |
(rtac allI 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
199 |
(simp_tac Sprod0_ss 1) |
1461 | 200 |
]); |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
201 |
|
2640 | 202 |
qed_goal "contlub_Ispair2" thy "contlub(Ispair(x))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
203 |
(fn prems => |
1461 | 204 |
[ |
205 |
(rtac contlubI 1), |
|
206 |
(strip_tac 1), |
|
207 |
(rtac trans 1), |
|
208 |
(rtac (thelub_sprod RS sym) 2), |
|
209 |
(etac (monofun_Ispair2 RS ch2ch_monofun) 2), |
|
210 |
(res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1), |
|
211 |
(res_inst_tac [("Q","lub(range(Y))=UU")] |
|
212 |
(excluded_middle RS disjE) 1), |
|
213 |
(etac sprod3_lemma4 1), |
|
214 |
(atac 1), |
|
215 |
(atac 1), |
|
216 |
(etac sprod3_lemma5 1), |
|
217 |
(atac 1), |
|
218 |
(atac 1), |
|
219 |
(etac sprod3_lemma6 1), |
|
220 |
(atac 1) |
|
221 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
222 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
223 |
|
2640 | 224 |
qed_goal "cont_Ispair1" thy "cont(Ispair)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
225 |
(fn prems => |
1461 | 226 |
[ |
227 |
(rtac monocontlub2cont 1), |
|
228 |
(rtac monofun_Ispair1 1), |
|
229 |
(rtac contlub_Ispair1 1) |
|
230 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
231 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
232 |
|
2640 | 233 |
qed_goal "cont_Ispair2" thy "cont(Ispair(x))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
234 |
(fn prems => |
1461 | 235 |
[ |
236 |
(rtac monocontlub2cont 1), |
|
237 |
(rtac monofun_Ispair2 1), |
|
238 |
(rtac contlub_Ispair2 1) |
|
239 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
240 |
|
2640 | 241 |
qed_goal "contlub_Isfst" thy "contlub(Isfst)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
242 |
(fn prems => |
1461 | 243 |
[ |
244 |
(rtac contlubI 1), |
|
245 |
(strip_tac 1), |
|
2033 | 246 |
(stac (lub_sprod RS thelubI) 1), |
1461 | 247 |
(atac 1), |
248 |
(res_inst_tac [("Q","lub(range(%i. Issnd(Y(i))))=UU")] |
|
249 |
(excluded_middle RS disjE) 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
250 |
(asm_simp_tac Sprod0_ss 1), |
1461 | 251 |
(res_inst_tac [("s","UU"),("t","lub(range(%i. Issnd(Y(i))))")] |
252 |
ssubst 1), |
|
253 |
(atac 1), |
|
254 |
(rtac trans 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
255 |
(asm_simp_tac Sprod0_ss 1), |
1461 | 256 |
(rtac sym 1), |
257 |
(rtac chain_UU_I_inverse 1), |
|
258 |
(rtac allI 1), |
|
259 |
(rtac strict_Isfst 1), |
|
260 |
(rtac swap 1), |
|
261 |
(etac (defined_IsfstIssnd RS conjunct2) 2), |
|
2033 | 262 |
(fast_tac (HOL_cs addSDs [monofun_Issnd RS ch2ch_monofun RS |
263 |
chain_UU_I RS spec]) 1) |
|
264 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
265 |
|
2640 | 266 |
qed_goal "contlub_Issnd" thy "contlub(Issnd)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
267 |
(fn prems => |
1461 | 268 |
[ |
269 |
(rtac contlubI 1), |
|
270 |
(strip_tac 1), |
|
2033 | 271 |
(stac (lub_sprod RS thelubI) 1), |
1461 | 272 |
(atac 1), |
273 |
(res_inst_tac [("Q","lub(range(%i. Isfst(Y(i))))=UU")] |
|
274 |
(excluded_middle RS disjE) 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
275 |
(asm_simp_tac Sprod0_ss 1), |
1461 | 276 |
(res_inst_tac [("s","UU"),("t","lub(range(%i. Isfst(Y(i))))")] |
277 |
ssubst 1), |
|
278 |
(atac 1), |
|
1277
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
regensbu
parents:
1274
diff
changeset
|
279 |
(asm_simp_tac Sprod0_ss 1), |
1461 | 280 |
(rtac sym 1), |
281 |
(rtac chain_UU_I_inverse 1), |
|
282 |
(rtac allI 1), |
|
283 |
(rtac strict_Issnd 1), |
|
284 |
(rtac swap 1), |
|
285 |
(etac (defined_IsfstIssnd RS conjunct1) 2), |
|
1675 | 286 |
(fast_tac (HOL_cs addSDs [monofun_Isfst RS ch2ch_monofun RS |
2033 | 287 |
chain_UU_I RS spec]) 1) |
288 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
289 |
|
2640 | 290 |
qed_goal "cont_Isfst" thy "cont(Isfst)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
291 |
(fn prems => |
1461 | 292 |
[ |
293 |
(rtac monocontlub2cont 1), |
|
294 |
(rtac monofun_Isfst 1), |
|
295 |
(rtac contlub_Isfst 1) |
|
296 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
297 |
|
2640 | 298 |
qed_goal "cont_Issnd" thy "cont(Issnd)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
299 |
(fn prems => |
1461 | 300 |
[ |
301 |
(rtac monocontlub2cont 1), |
|
302 |
(rtac monofun_Issnd 1), |
|
303 |
(rtac contlub_Issnd 1) |
|
304 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
305 |
|
5033 | 306 |
qed_goal "spair_eq" thy "[|x1=x2;y1=y2|] ==> (:x1,y1:) = (:x2,y2:)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
307 |
(fn prems => |
1461 | 308 |
[ |
309 |
(cut_facts_tac prems 1), |
|
310 |
(fast_tac HOL_cs 1) |
|
311 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
312 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
313 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
314 |
(* convert all lemmas to the continuous versions *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
315 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
316 |
|
2640 | 317 |
qed_goalw "beta_cfun_sprod" thy [spair_def] |
3842 | 318 |
"(LAM x y. Ispair x y)`a`b = Ispair a b" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
319 |
(fn prems => |
1461 | 320 |
[ |
2033 | 321 |
(stac beta_cfun 1), |
4098 | 322 |
(simp_tac (simpset() addsimps [cont_Ispair2, cont_Ispair1, |
2566 | 323 |
cont2cont_CF1L]) 1), |
2033 | 324 |
(stac beta_cfun 1), |
1461 | 325 |
(rtac cont_Ispair2 1), |
326 |
(rtac refl 1) |
|
327 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
328 |
|
2640 | 329 |
qed_goalw "inject_spair" thy [spair_def] |
5033 | 330 |
"[| aa~=UU ; ba~=UU ; (:a,b:)=(:aa,ba:) |] ==> a=aa & b=ba" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
331 |
(fn prems => |
1461 | 332 |
[ |
333 |
(cut_facts_tac prems 1), |
|
334 |
(etac inject_Ispair 1), |
|
335 |
(atac 1), |
|
336 |
(etac box_equals 1), |
|
337 |
(rtac beta_cfun_sprod 1), |
|
338 |
(rtac beta_cfun_sprod 1) |
|
339 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
340 |
|
5033 | 341 |
qed_goalw "inst_sprod_pcpo2" thy [spair_def] "UU = (:UU,UU:)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
342 |
(fn prems => |
1461 | 343 |
[ |
344 |
(rtac sym 1), |
|
345 |
(rtac trans 1), |
|
346 |
(rtac beta_cfun_sprod 1), |
|
347 |
(rtac sym 1), |
|
348 |
(rtac inst_sprod_pcpo 1) |
|
349 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
350 |
|
2640 | 351 |
qed_goalw "strict_spair" thy [spair_def] |
5033 | 352 |
"(a=UU | b=UU) ==> (:a,b:)=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
353 |
(fn prems => |
1461 | 354 |
[ |
355 |
(cut_facts_tac prems 1), |
|
356 |
(rtac trans 1), |
|
357 |
(rtac beta_cfun_sprod 1), |
|
358 |
(rtac trans 1), |
|
359 |
(rtac (inst_sprod_pcpo RS sym) 2), |
|
360 |
(etac strict_Ispair 1) |
|
361 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
362 |
|
5033 | 363 |
qed_goalw "strict_spair1" thy [spair_def] "(:UU,b:) = UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
364 |
(fn prems => |
1461 | 365 |
[ |
2033 | 366 |
(stac beta_cfun_sprod 1), |
1461 | 367 |
(rtac trans 1), |
368 |
(rtac (inst_sprod_pcpo RS sym) 2), |
|
369 |
(rtac strict_Ispair1 1) |
|
370 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
371 |
|
5033 | 372 |
qed_goalw "strict_spair2" thy [spair_def] "(:a,UU:) = UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
373 |
(fn prems => |
1461 | 374 |
[ |
2033 | 375 |
(stac beta_cfun_sprod 1), |
1461 | 376 |
(rtac trans 1), |
377 |
(rtac (inst_sprod_pcpo RS sym) 2), |
|
378 |
(rtac strict_Ispair2 1) |
|
379 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
380 |
|
2640 | 381 |
qed_goalw "strict_spair_rev" thy [spair_def] |
5033 | 382 |
"(:x,y:)~=UU ==> ~x=UU & ~y=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
383 |
(fn prems => |
1461 | 384 |
[ |
385 |
(cut_facts_tac prems 1), |
|
386 |
(rtac strict_Ispair_rev 1), |
|
387 |
(rtac (beta_cfun_sprod RS subst) 1), |
|
388 |
(rtac (inst_sprod_pcpo RS subst) 1), |
|
389 |
(atac 1) |
|
390 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
391 |
|
2640 | 392 |
qed_goalw "defined_spair_rev" thy [spair_def] |
5033 | 393 |
"(:a,b:) = UU ==> (a = UU | b = UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
394 |
(fn prems => |
1461 | 395 |
[ |
396 |
(cut_facts_tac prems 1), |
|
397 |
(rtac defined_Ispair_rev 1), |
|
398 |
(rtac (beta_cfun_sprod RS subst) 1), |
|
399 |
(rtac (inst_sprod_pcpo RS subst) 1), |
|
400 |
(atac 1) |
|
401 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
402 |
|
2640 | 403 |
qed_goalw "defined_spair" thy [spair_def] |
5033 | 404 |
"[|a~=UU; b~=UU|] ==> (:a,b:) ~= UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
405 |
(fn prems => |
1461 | 406 |
[ |
407 |
(cut_facts_tac prems 1), |
|
2033 | 408 |
(stac beta_cfun_sprod 1), |
409 |
(stac inst_sprod_pcpo 1), |
|
1461 | 410 |
(etac defined_Ispair 1), |
411 |
(atac 1) |
|
412 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
413 |
|
2640 | 414 |
qed_goalw "Exh_Sprod2" thy [spair_def] |
5033 | 415 |
"z=UU | (? a b. z=(:a,b:) & a~=UU & b~=UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
416 |
(fn prems => |
1461 | 417 |
[ |
418 |
(rtac (Exh_Sprod RS disjE) 1), |
|
419 |
(rtac disjI1 1), |
|
2033 | 420 |
(stac inst_sprod_pcpo 1), |
1461 | 421 |
(atac 1), |
422 |
(rtac disjI2 1), |
|
423 |
(etac exE 1), |
|
424 |
(etac exE 1), |
|
425 |
(rtac exI 1), |
|
426 |
(rtac exI 1), |
|
427 |
(rtac conjI 1), |
|
2033 | 428 |
(stac beta_cfun_sprod 1), |
1461 | 429 |
(fast_tac HOL_cs 1), |
430 |
(fast_tac HOL_cs 1) |
|
431 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
432 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
433 |
|
2640 | 434 |
qed_goalw "sprodE" thy [spair_def] |
5033 | 435 |
"[|p=UU ==> Q;!!x y. [|p=(:x,y:);x~=UU ; y~=UU|] ==> Q|] ==> Q" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
436 |
(fn prems => |
1461 | 437 |
[ |
438 |
(rtac IsprodE 1), |
|
439 |
(resolve_tac prems 1), |
|
2033 | 440 |
(stac inst_sprod_pcpo 1), |
1461 | 441 |
(atac 1), |
442 |
(resolve_tac prems 1), |
|
443 |
(atac 2), |
|
444 |
(atac 2), |
|
2033 | 445 |
(stac beta_cfun_sprod 1), |
1461 | 446 |
(atac 1) |
447 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
448 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
449 |
|
2640 | 450 |
qed_goalw "strict_sfst" thy [sfst_def] |
1461 | 451 |
"p=UU==>sfst`p=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
452 |
(fn prems => |
1461 | 453 |
[ |
454 |
(cut_facts_tac prems 1), |
|
2033 | 455 |
(stac beta_cfun 1), |
1461 | 456 |
(rtac cont_Isfst 1), |
457 |
(rtac strict_Isfst 1), |
|
458 |
(rtac (inst_sprod_pcpo RS subst) 1), |
|
459 |
(atac 1) |
|
460 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
461 |
|
2640 | 462 |
qed_goalw "strict_sfst1" thy [sfst_def,spair_def] |
5033 | 463 |
"sfst`(:UU,y:) = UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
464 |
(fn prems => |
1461 | 465 |
[ |
2033 | 466 |
(stac beta_cfun_sprod 1), |
467 |
(stac beta_cfun 1), |
|
1461 | 468 |
(rtac cont_Isfst 1), |
469 |
(rtac strict_Isfst1 1) |
|
470 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
471 |
|
2640 | 472 |
qed_goalw "strict_sfst2" thy [sfst_def,spair_def] |
5033 | 473 |
"sfst`(:x,UU:) = UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
474 |
(fn prems => |
1461 | 475 |
[ |
2033 | 476 |
(stac beta_cfun_sprod 1), |
477 |
(stac beta_cfun 1), |
|
1461 | 478 |
(rtac cont_Isfst 1), |
479 |
(rtac strict_Isfst2 1) |
|
480 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
481 |
|
2640 | 482 |
qed_goalw "strict_ssnd" thy [ssnd_def] |
1461 | 483 |
"p=UU==>ssnd`p=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
484 |
(fn prems => |
1461 | 485 |
[ |
486 |
(cut_facts_tac prems 1), |
|
2033 | 487 |
(stac beta_cfun 1), |
1461 | 488 |
(rtac cont_Issnd 1), |
489 |
(rtac strict_Issnd 1), |
|
490 |
(rtac (inst_sprod_pcpo RS subst) 1), |
|
491 |
(atac 1) |
|
492 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
493 |
|
2640 | 494 |
qed_goalw "strict_ssnd1" thy [ssnd_def,spair_def] |
5033 | 495 |
"ssnd`(:UU,y:) = UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
496 |
(fn prems => |
1461 | 497 |
[ |
2033 | 498 |
(stac beta_cfun_sprod 1), |
499 |
(stac beta_cfun 1), |
|
1461 | 500 |
(rtac cont_Issnd 1), |
501 |
(rtac strict_Issnd1 1) |
|
502 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
503 |
|
2640 | 504 |
qed_goalw "strict_ssnd2" thy [ssnd_def,spair_def] |
5033 | 505 |
"ssnd`(:x,UU:) = UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
506 |
(fn prems => |
1461 | 507 |
[ |
2033 | 508 |
(stac beta_cfun_sprod 1), |
509 |
(stac beta_cfun 1), |
|
1461 | 510 |
(rtac cont_Issnd 1), |
511 |
(rtac strict_Issnd2 1) |
|
512 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
513 |
|
2640 | 514 |
qed_goalw "sfst2" thy [sfst_def,spair_def] |
5033 | 515 |
"y~=UU ==>sfst`(:x,y:)=x" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
516 |
(fn prems => |
1461 | 517 |
[ |
518 |
(cut_facts_tac prems 1), |
|
2033 | 519 |
(stac beta_cfun_sprod 1), |
520 |
(stac beta_cfun 1), |
|
1461 | 521 |
(rtac cont_Isfst 1), |
522 |
(etac Isfst2 1) |
|
523 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
524 |
|
2640 | 525 |
qed_goalw "ssnd2" thy [ssnd_def,spair_def] |
5033 | 526 |
"x~=UU ==>ssnd`(:x,y:)=y" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
527 |
(fn prems => |
1461 | 528 |
[ |
529 |
(cut_facts_tac prems 1), |
|
2033 | 530 |
(stac beta_cfun_sprod 1), |
531 |
(stac beta_cfun 1), |
|
1461 | 532 |
(rtac cont_Issnd 1), |
533 |
(etac Issnd2 1) |
|
534 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
535 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
536 |
|
2640 | 537 |
qed_goalw "defined_sfstssnd" thy [sfst_def,ssnd_def,spair_def] |
1461 | 538 |
"p~=UU ==> sfst`p ~=UU & ssnd`p ~=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
539 |
(fn prems => |
1461 | 540 |
[ |
541 |
(cut_facts_tac prems 1), |
|
2033 | 542 |
(stac beta_cfun 1), |
1461 | 543 |
(rtac cont_Issnd 1), |
2033 | 544 |
(stac beta_cfun 1), |
1461 | 545 |
(rtac cont_Isfst 1), |
546 |
(rtac defined_IsfstIssnd 1), |
|
547 |
(rtac (inst_sprod_pcpo RS subst) 1), |
|
548 |
(atac 1) |
|
549 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
550 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
551 |
|
2640 | 552 |
qed_goalw "surjective_pairing_Sprod2" thy |
5033 | 553 |
[sfst_def,ssnd_def,spair_def] "(:sfst`p , ssnd`p:) = p" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
554 |
(fn prems => |
1461 | 555 |
[ |
2033 | 556 |
(stac beta_cfun_sprod 1), |
557 |
(stac beta_cfun 1), |
|
1461 | 558 |
(rtac cont_Issnd 1), |
2033 | 559 |
(stac beta_cfun 1), |
1461 | 560 |
(rtac cont_Isfst 1), |
561 |
(rtac (surjective_pairing_Sprod RS sym) 1) |
|
562 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
563 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
564 |
|
2640 | 565 |
qed_goalw "lub_sprod2" thy [sfst_def,ssnd_def,spair_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
566 |
"[|chain(S)|] ==> range(S) <<| \ |
5033 | 567 |
\ (: lub(range(%i. sfst`(S i))), lub(range(%i. ssnd`(S i))) :)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
568 |
(fn prems => |
1461 | 569 |
[ |
570 |
(cut_facts_tac prems 1), |
|
2033 | 571 |
(stac beta_cfun_sprod 1), |
572 |
(stac (beta_cfun RS ext) 1), |
|
1461 | 573 |
(rtac cont_Issnd 1), |
2033 | 574 |
(stac (beta_cfun RS ext) 1), |
1461 | 575 |
(rtac cont_Isfst 1), |
576 |
(rtac lub_sprod 1), |
|
577 |
(resolve_tac prems 1) |
|
578 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
579 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
580 |
|
1779 | 581 |
bind_thm ("thelub_sprod2", lub_sprod2 RS thelubI); |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
582 |
(* |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
583 |
"chain ?S1 ==> |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
584 |
lub (range ?S1) = |
5033 | 585 |
(:lub (range (%i. sfst`(?S1 i))), lub (range (%i. ssnd`(?S1 i))):)" : thm |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
586 |
*) |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
587 |
|
2640 | 588 |
qed_goalw "ssplit1" thy [ssplit_def] |
1461 | 589 |
"ssplit`f`UU=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
590 |
(fn prems => |
1461 | 591 |
[ |
2033 | 592 |
(stac beta_cfun 1), |
2566 | 593 |
(Simp_tac 1), |
2033 | 594 |
(stac strictify1 1), |
1461 | 595 |
(rtac refl 1) |
596 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
597 |
|
2640 | 598 |
qed_goalw "ssplit2" thy [ssplit_def] |
5033 | 599 |
"[|x~=UU;y~=UU|] ==> ssplit`f`(:x,y:)= f`x`y" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
600 |
(fn prems => |
1461 | 601 |
[ |
2033 | 602 |
(stac beta_cfun 1), |
2566 | 603 |
(Simp_tac 1), |
2033 | 604 |
(stac strictify2 1), |
1461 | 605 |
(rtac defined_spair 1), |
606 |
(resolve_tac prems 1), |
|
607 |
(resolve_tac prems 1), |
|
2033 | 608 |
(stac beta_cfun 1), |
2566 | 609 |
(Simp_tac 1), |
2033 | 610 |
(stac sfst2 1), |
1461 | 611 |
(resolve_tac prems 1), |
2033 | 612 |
(stac ssnd2 1), |
1461 | 613 |
(resolve_tac prems 1), |
614 |
(rtac refl 1) |
|
615 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
616 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
617 |
|
2640 | 618 |
qed_goalw "ssplit3" thy [ssplit_def] |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1043
diff
changeset
|
619 |
"ssplit`spair`z=z" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
620 |
(fn prems => |
1461 | 621 |
[ |
2033 | 622 |
(stac beta_cfun 1), |
2566 | 623 |
(Simp_tac 1), |
1675 | 624 |
(case_tac "z=UU" 1), |
1461 | 625 |
(hyp_subst_tac 1), |
626 |
(rtac strictify1 1), |
|
627 |
(rtac trans 1), |
|
628 |
(rtac strictify2 1), |
|
629 |
(atac 1), |
|
2033 | 630 |
(stac beta_cfun 1), |
2566 | 631 |
(Simp_tac 1), |
1461 | 632 |
(rtac surjective_pairing_Sprod2 1) |
633 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
634 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
635 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
636 |
(* install simplifier for Sprod *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
637 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
638 |
|
1274 | 639 |
val Sprod_rews = [strict_spair1,strict_spair2,strict_sfst1,strict_sfst2, |
1461 | 640 |
strict_ssnd1,strict_ssnd2,sfst2,ssnd2,defined_spair, |
641 |
ssplit1,ssplit2]; |
|
2640 | 642 |
Addsimps Sprod_rews; |
1274 | 643 |