author | wenzelm |
Tue, 27 Jul 1999 22:04:30 +0200 | |
changeset 7108 | 0229ce6735f6 |
parent 5291 | 5706f0ef1d43 |
child 8161 | bde1391fd0a5 |
permissions | -rw-r--r-- |
2278 | 1 |
(* Title: HOLCF/Up3.ML |
2 |
ID: $Id$ |
|
3 |
Author: Franz Regensburger |
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
|
5 |
||
6 |
Lemmas for Up3.thy |
|
7 |
*) |
|
8 |
||
9 |
open Up3; |
|
10 |
||
2640 | 11 |
(* for compatibility with old HOLCF-Version *) |
12 |
qed_goal "inst_up_pcpo" thy "UU = Abs_Up(Inl ())" |
|
13 |
(fn prems => |
|
14 |
[ |
|
15 |
(simp_tac (HOL_ss addsimps [UU_def,UU_up_def]) 1) |
|
16 |
]); |
|
17 |
||
2278 | 18 |
(* -------------------------------------------------------------------------*) |
19 |
(* some lemmas restated for class pcpo *) |
|
20 |
(* ------------------------------------------------------------------------ *) |
|
21 |
||
2640 | 22 |
qed_goal "less_up3b" thy "~ Iup(x) << UU" |
2278 | 23 |
(fn prems => |
24 |
[ |
|
25 |
(stac inst_up_pcpo 1), |
|
26 |
(rtac less_up2b 1) |
|
27 |
]); |
|
28 |
||
2640 | 29 |
qed_goal "defined_Iup2" thy "Iup(x) ~= UU" |
2278 | 30 |
(fn prems => |
31 |
[ |
|
32 |
(stac inst_up_pcpo 1), |
|
33 |
(rtac defined_Iup 1) |
|
34 |
]); |
|
35 |
||
36 |
(* ------------------------------------------------------------------------ *) |
|
37 |
(* continuity for Iup *) |
|
38 |
(* ------------------------------------------------------------------------ *) |
|
39 |
||
2640 | 40 |
qed_goal "contlub_Iup" thy "contlub(Iup)" |
2278 | 41 |
(fn prems => |
42 |
[ |
|
43 |
(rtac contlubI 1), |
|
44 |
(strip_tac 1), |
|
45 |
(rtac trans 1), |
|
46 |
(rtac (thelub_up1a RS sym) 2), |
|
47 |
(fast_tac HOL_cs 3), |
|
48 |
(etac (monofun_Iup RS ch2ch_monofun) 2), |
|
49 |
(res_inst_tac [("f","Iup")] arg_cong 1), |
|
50 |
(rtac lub_equal 1), |
|
51 |
(atac 1), |
|
52 |
(rtac (monofun_Ifup2 RS ch2ch_monofun) 1), |
|
53 |
(etac (monofun_Iup RS ch2ch_monofun) 1), |
|
54 |
(asm_simp_tac Up0_ss 1) |
|
55 |
]); |
|
56 |
||
2640 | 57 |
qed_goal "cont_Iup" thy "cont(Iup)" |
2278 | 58 |
(fn prems => |
59 |
[ |
|
60 |
(rtac monocontlub2cont 1), |
|
61 |
(rtac monofun_Iup 1), |
|
62 |
(rtac contlub_Iup 1) |
|
63 |
]); |
|
64 |
||
65 |
||
66 |
(* ------------------------------------------------------------------------ *) |
|
67 |
(* continuity for Ifup *) |
|
68 |
(* ------------------------------------------------------------------------ *) |
|
69 |
||
2640 | 70 |
qed_goal "contlub_Ifup1" thy "contlub(Ifup)" |
2278 | 71 |
(fn prems => |
72 |
[ |
|
73 |
(rtac contlubI 1), |
|
74 |
(strip_tac 1), |
|
75 |
(rtac trans 1), |
|
76 |
(rtac (thelub_fun RS sym) 2), |
|
77 |
(etac (monofun_Ifup1 RS ch2ch_monofun) 2), |
|
78 |
(rtac ext 1), |
|
79 |
(res_inst_tac [("p","x")] upE 1), |
|
80 |
(asm_simp_tac Up0_ss 1), |
|
81 |
(rtac (lub_const RS thelubI RS sym) 1), |
|
82 |
(asm_simp_tac Up0_ss 1), |
|
83 |
(etac contlub_cfun_fun 1) |
|
84 |
]); |
|
85 |
||
86 |
||
2640 | 87 |
qed_goal "contlub_Ifup2" thy "contlub(Ifup(f))" |
2278 | 88 |
(fn prems => |
89 |
[ |
|
90 |
(rtac contlubI 1), |
|
91 |
(strip_tac 1), |
|
92 |
(rtac disjE 1), |
|
93 |
(stac thelub_up1a 2), |
|
94 |
(atac 2), |
|
95 |
(atac 2), |
|
96 |
(asm_simp_tac Up0_ss 2), |
|
97 |
(stac thelub_up1b 3), |
|
98 |
(atac 3), |
|
99 |
(atac 3), |
|
100 |
(fast_tac HOL_cs 1), |
|
101 |
(asm_simp_tac Up0_ss 2), |
|
102 |
(rtac (chain_UU_I_inverse RS sym) 2), |
|
103 |
(rtac allI 2), |
|
104 |
(res_inst_tac [("p","Y(i)")] upE 2), |
|
105 |
(asm_simp_tac Up0_ss 2), |
|
106 |
(rtac notE 2), |
|
107 |
(dtac spec 2), |
|
108 |
(etac spec 2), |
|
109 |
(atac 2), |
|
110 |
(stac contlub_cfun_arg 1), |
|
111 |
(etac (monofun_Ifup2 RS ch2ch_monofun) 1), |
|
112 |
(rtac lub_equal2 1), |
|
5291 | 113 |
(rtac (monofun_Rep_CFun2 RS ch2ch_monofun) 2), |
2278 | 114 |
(etac (monofun_Ifup2 RS ch2ch_monofun) 2), |
115 |
(etac (monofun_Ifup2 RS ch2ch_monofun) 2), |
|
116 |
(rtac (chain_mono2 RS exE) 1), |
|
117 |
(atac 2), |
|
118 |
(etac exE 1), |
|
119 |
(etac exE 1), |
|
120 |
(rtac exI 1), |
|
121 |
(res_inst_tac [("s","Iup(x)"),("t","Y(i)")] ssubst 1), |
|
122 |
(atac 1), |
|
123 |
(rtac defined_Iup2 1), |
|
124 |
(rtac exI 1), |
|
125 |
(strip_tac 1), |
|
126 |
(res_inst_tac [("p","Y(i)")] upE 1), |
|
127 |
(asm_simp_tac Up0_ss 2), |
|
128 |
(res_inst_tac [("P","Y(i) = UU")] notE 1), |
|
129 |
(fast_tac HOL_cs 1), |
|
130 |
(stac inst_up_pcpo 1), |
|
131 |
(atac 1) |
|
132 |
]); |
|
133 |
||
2640 | 134 |
qed_goal "cont_Ifup1" thy "cont(Ifup)" |
2278 | 135 |
(fn prems => |
136 |
[ |
|
137 |
(rtac monocontlub2cont 1), |
|
138 |
(rtac monofun_Ifup1 1), |
|
139 |
(rtac contlub_Ifup1 1) |
|
140 |
]); |
|
141 |
||
2640 | 142 |
qed_goal "cont_Ifup2" thy "cont(Ifup(f))" |
2278 | 143 |
(fn prems => |
144 |
[ |
|
145 |
(rtac monocontlub2cont 1), |
|
146 |
(rtac monofun_Ifup2 1), |
|
147 |
(rtac contlub_Ifup2 1) |
|
148 |
]); |
|
149 |
||
150 |
||
151 |
(* ------------------------------------------------------------------------ *) |
|
152 |
(* continuous versions of lemmas for ('a)u *) |
|
153 |
(* ------------------------------------------------------------------------ *) |
|
154 |
||
2640 | 155 |
qed_goalw "Exh_Up1" thy [up_def] "z = UU | (? x. z = up`x)" |
2278 | 156 |
(fn prems => |
157 |
[ |
|
158 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1), |
|
159 |
(stac inst_up_pcpo 1), |
|
160 |
(rtac Exh_Up 1) |
|
161 |
]); |
|
162 |
||
2640 | 163 |
qed_goalw "inject_up" thy [up_def] "up`x=up`y ==> x=y" |
2278 | 164 |
(fn prems => |
165 |
[ |
|
166 |
(cut_facts_tac prems 1), |
|
167 |
(rtac inject_Iup 1), |
|
168 |
(etac box_equals 1), |
|
169 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1), |
|
170 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1) |
|
171 |
]); |
|
172 |
||
2640 | 173 |
qed_goalw "defined_up" thy [up_def] " up`x ~= UU" |
2278 | 174 |
(fn prems => |
175 |
[ |
|
176 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1), |
|
177 |
(rtac defined_Iup2 1) |
|
178 |
]); |
|
179 |
||
2640 | 180 |
qed_goalw "upE1" thy [up_def] |
2278 | 181 |
"[| p=UU ==> Q; !!x. p=up`x==>Q|] ==>Q" |
182 |
(fn prems => |
|
183 |
[ |
|
184 |
(rtac upE 1), |
|
185 |
(resolve_tac prems 1), |
|
186 |
(etac (inst_up_pcpo RS ssubst) 1), |
|
187 |
(resolve_tac (tl prems) 1), |
|
188 |
(asm_simp_tac (Up0_ss addsimps [cont_Iup]) 1) |
|
189 |
]); |
|
190 |
||
4098 | 191 |
val tac = (simp_tac (simpset() addsimps [cont_Iup,cont_Ifup1, |
2566 | 192 |
cont_Ifup2,cont2cont_CF1L]) 1); |
2278 | 193 |
|
2640 | 194 |
qed_goalw "fup1" thy [up_def,fup_def] "fup`f`UU=UU" |
2278 | 195 |
(fn prems => |
196 |
[ |
|
197 |
(stac inst_up_pcpo 1), |
|
198 |
(stac beta_cfun 1), |
|
2566 | 199 |
tac, |
2278 | 200 |
(stac beta_cfun 1), |
2566 | 201 |
tac, |
2278 | 202 |
(simp_tac (Up0_ss addsimps [cont_Iup,cont_Ifup1,cont_Ifup2]) 1) |
203 |
]); |
|
204 |
||
2640 | 205 |
qed_goalw "fup2" thy [up_def,fup_def] "fup`f`(up`x)=f`x" |
2278 | 206 |
(fn prems => |
207 |
[ |
|
208 |
(stac beta_cfun 1), |
|
209 |
(rtac cont_Iup 1), |
|
210 |
(stac beta_cfun 1), |
|
2566 | 211 |
tac, |
2278 | 212 |
(stac beta_cfun 1), |
213 |
(rtac cont_Ifup2 1), |
|
214 |
(simp_tac (Up0_ss addsimps [cont_Iup,cont_Ifup1,cont_Ifup2]) 1) |
|
215 |
]); |
|
216 |
||
2640 | 217 |
qed_goalw "less_up4b" thy [up_def,fup_def] "~ up`x << UU" |
2278 | 218 |
(fn prems => |
219 |
[ |
|
220 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1), |
|
221 |
(rtac less_up3b 1) |
|
222 |
]); |
|
223 |
||
2640 | 224 |
qed_goalw "less_up4c" thy [up_def,fup_def] |
2278 | 225 |
"(up`x << up`y) = (x<<y)" |
226 |
(fn prems => |
|
227 |
[ |
|
228 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1), |
|
229 |
(rtac less_up2c 1) |
|
230 |
]); |
|
231 |
||
2640 | 232 |
qed_goalw "thelub_up2a" thy [up_def,fup_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
233 |
"[| chain(Y); ? i x. Y(i) = up`x |] ==>\ |
2278 | 234 |
\ lub(range(Y)) = up`(lub(range(%i. fup`(LAM x. x)`(Y i))))" |
235 |
(fn prems => |
|
236 |
[ |
|
237 |
(cut_facts_tac prems 1), |
|
238 |
(stac beta_cfun 1), |
|
2566 | 239 |
tac, |
2278 | 240 |
(stac beta_cfun 1), |
2566 | 241 |
tac, |
2278 | 242 |
(stac (beta_cfun RS ext) 1), |
2566 | 243 |
tac, |
2278 | 244 |
(rtac thelub_up1a 1), |
245 |
(atac 1), |
|
246 |
(etac exE 1), |
|
247 |
(etac exE 1), |
|
248 |
(rtac exI 1), |
|
249 |
(rtac exI 1), |
|
250 |
(etac box_equals 1), |
|
251 |
(rtac refl 1), |
|
252 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1) |
|
253 |
]); |
|
254 |
||
255 |
||
256 |
||
2640 | 257 |
qed_goalw "thelub_up2b" thy [up_def,fup_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
258 |
"[| chain(Y); ! i x. Y(i) ~= up`x |] ==> lub(range(Y)) = UU" |
2278 | 259 |
(fn prems => |
260 |
[ |
|
261 |
(cut_facts_tac prems 1), |
|
262 |
(stac inst_up_pcpo 1), |
|
263 |
(rtac thelub_up1b 1), |
|
264 |
(atac 1), |
|
265 |
(strip_tac 1), |
|
266 |
(dtac spec 1), |
|
267 |
(dtac spec 1), |
|
268 |
(rtac swap 1), |
|
269 |
(atac 1), |
|
270 |
(dtac notnotD 1), |
|
271 |
(etac box_equals 1), |
|
272 |
(rtac refl 1), |
|
273 |
(simp_tac (Up0_ss addsimps [cont_Iup]) 1) |
|
274 |
]); |
|
275 |
||
276 |
||
3842 | 277 |
qed_goal "up_lemma2" thy " (? x. z = up`x) = (z~=UU)" |
2278 | 278 |
(fn prems => |
279 |
[ |
|
280 |
(rtac iffI 1), |
|
281 |
(etac exE 1), |
|
282 |
(hyp_subst_tac 1), |
|
283 |
(rtac defined_up 1), |
|
284 |
(res_inst_tac [("p","z")] upE1 1), |
|
285 |
(etac notE 1), |
|
286 |
(atac 1), |
|
287 |
(etac exI 1) |
|
288 |
]); |
|
289 |
||
290 |
||
2640 | 291 |
qed_goal "thelub_up2a_rev" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
292 |
"[| chain(Y); lub(range(Y)) = up`x |] ==> ? i x. Y(i) = up`x" |
2278 | 293 |
(fn prems => |
294 |
[ |
|
295 |
(cut_facts_tac prems 1), |
|
296 |
(rtac exE 1), |
|
297 |
(rtac chain_UU_I_inverse2 1), |
|
298 |
(rtac (up_lemma2 RS iffD1) 1), |
|
299 |
(etac exI 1), |
|
300 |
(rtac exI 1), |
|
301 |
(rtac (up_lemma2 RS iffD2) 1), |
|
302 |
(atac 1) |
|
303 |
]); |
|
304 |
||
2640 | 305 |
qed_goal "thelub_up2b_rev" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
306 |
"[| chain(Y); lub(range(Y)) = UU |] ==> ! i x. Y(i) ~= up`x" |
2278 | 307 |
(fn prems => |
308 |
[ |
|
309 |
(cut_facts_tac prems 1), |
|
310 |
(rtac allI 1), |
|
311 |
(rtac (not_ex RS iffD1) 1), |
|
312 |
(rtac contrapos 1), |
|
313 |
(etac (up_lemma2 RS iffD1) 2), |
|
314 |
(fast_tac (HOL_cs addSDs [chain_UU_I RS spec]) 1) |
|
315 |
]); |
|
316 |
||
317 |
||
2640 | 318 |
qed_goal "thelub_up3" thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
319 |
"chain(Y) ==> lub(range(Y)) = UU |\ |
3842 | 320 |
\ lub(range(Y)) = up`(lub(range(%i. fup`(LAM x. x)`(Y i))))" |
2278 | 321 |
(fn prems => |
322 |
[ |
|
323 |
(cut_facts_tac prems 1), |
|
324 |
(rtac disjE 1), |
|
325 |
(rtac disjI1 2), |
|
326 |
(rtac thelub_up2b 2), |
|
327 |
(atac 2), |
|
328 |
(atac 2), |
|
329 |
(rtac disjI2 2), |
|
330 |
(rtac thelub_up2a 2), |
|
331 |
(atac 2), |
|
332 |
(atac 2), |
|
333 |
(fast_tac HOL_cs 1) |
|
334 |
]); |
|
335 |
||
2640 | 336 |
qed_goal "fup3" thy "fup`up`x=x" |
2278 | 337 |
(fn prems => |
338 |
[ |
|
339 |
(res_inst_tac [("p","x")] upE1 1), |
|
4098 | 340 |
(asm_simp_tac ((simpset_of Cfun3.thy) addsimps [fup1,fup2]) 1), |
341 |
(asm_simp_tac ((simpset_of Cfun3.thy) addsimps [fup1,fup2]) 1) |
|
2278 | 342 |
]); |
343 |
||
344 |
(* ------------------------------------------------------------------------ *) |
|
345 |
(* install simplifier for ('a)u *) |
|
346 |
(* ------------------------------------------------------------------------ *) |
|
347 |
||
3327 | 348 |
Addsimps [fup1,fup2,defined_up]; |