2469
|
1 |
(* Title: ZF/AC/OrdQuant.thy
|
|
2 |
ID: $Id$
|
|
3 |
Authors: Krzysztof Grabczewski and L C Paulson
|
|
4 |
|
|
5 |
Quantifiers and union operator for ordinals.
|
|
6 |
*)
|
|
7 |
|
|
8 |
(*** universal quantifier for ordinals ***)
|
|
9 |
|
|
10 |
qed_goalw "oallI" thy [oall_def]
|
|
11 |
"[| !!x. x<A ==> P(x) |] ==> ALL x<A. P(x)"
|
|
12 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]);
|
|
13 |
|
|
14 |
qed_goalw "ospec" thy [oall_def]
|
|
15 |
"[| ALL x<A. P(x); x<A |] ==> P(x)"
|
|
16 |
(fn major::prems=>
|
|
17 |
[ (rtac (major RS spec RS mp) 1),
|
|
18 |
(resolve_tac prems 1) ]);
|
|
19 |
|
|
20 |
qed_goalw "oallE" thy [oall_def]
|
|
21 |
"[| ALL x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q"
|
|
22 |
(fn major::prems=>
|
|
23 |
[ (rtac (major RS allE) 1),
|
|
24 |
(REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]);
|
|
25 |
|
|
26 |
qed_goal "rev_oallE" thy
|
|
27 |
"[| ALL x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q"
|
|
28 |
(fn major::prems=>
|
|
29 |
[ (rtac (major RS oallE) 1),
|
|
30 |
(REPEAT (eresolve_tac prems 1)) ]);
|
|
31 |
|
|
32 |
(*Trival rewrite rule; (ALL x<a.P)<->P holds only if a is not 0!*)
|
|
33 |
qed_goal "oall_simp" thy "(ALL x<a. True) <-> True"
|
|
34 |
(fn _=> [ (REPEAT (ares_tac [TrueI,oallI,iffI] 1)) ]);
|
|
35 |
|
|
36 |
(*Congruence rule for rewriting*)
|
|
37 |
qed_goalw "oall_cong" thy [oall_def]
|
|
38 |
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] ==> oall(a,P) <-> oall(a',P')"
|
4091
|
39 |
(fn prems=> [ (simp_tac (simpset() addsimps prems) 1) ]);
|
2469
|
40 |
|
|
41 |
|
|
42 |
(*** existential quantifier for ordinals ***)
|
|
43 |
|
|
44 |
qed_goalw "oexI" thy [oex_def]
|
|
45 |
"[| P(x); x<A |] ==> EX x<A. P(x)"
|
|
46 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]);
|
|
47 |
|
|
48 |
(*Not of the general form for such rules; ~EX has become ALL~ *)
|
|
49 |
qed_goal "oexCI" thy
|
3840
|
50 |
"[| ALL x<A. ~P(x) ==> P(a); a<A |] ==> EX x<A. P(x)"
|
2469
|
51 |
(fn prems=>
|
|
52 |
[ (rtac classical 1),
|
|
53 |
(REPEAT (ares_tac (prems@[oexI,oallI,notI,notE]) 1)) ]);
|
|
54 |
|
|
55 |
qed_goalw "oexE" thy [oex_def]
|
|
56 |
"[| EX x<A. P(x); !!x. [| x<A; P(x) |] ==> Q \
|
|
57 |
\ |] ==> Q"
|
|
58 |
(fn major::prems=>
|
|
59 |
[ (rtac (major RS exE) 1),
|
|
60 |
(REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]);
|
|
61 |
|
|
62 |
qed_goalw "oex_cong" thy [oex_def]
|
|
63 |
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) \
|
|
64 |
\ |] ==> oex(a,P) <-> oex(a',P')"
|
4091
|
65 |
(fn prems=> [ (simp_tac (simpset() addsimps prems addcongs [conj_cong]) 1) ]);
|
2469
|
66 |
|
|
67 |
|
|
68 |
(*** Rules for Ordinal-Indexed Unions ***)
|
|
69 |
|
|
70 |
qed_goalw "OUN_I" thy [OUnion_def]
|
|
71 |
"!!i. [| a<i; b: B(a) |] ==> b: (UN z<i. B(z))"
|
4091
|
72 |
(fn _=> [ fast_tac (claset() addSEs [ltE]) 1 ]);
|
2469
|
73 |
|
|
74 |
qed_goalw "OUN_E" thy [OUnion_def]
|
|
75 |
"[| b : (UN z<i. B(z)); !!a.[| b: B(a); a<i |] ==> R |] ==> R"
|
|
76 |
(fn major::prems=>
|
|
77 |
[ (rtac (major RS CollectE) 1),
|
|
78 |
(rtac UN_E 1),
|
|
79 |
(REPEAT (ares_tac (ltI::prems) 1)) ]);
|
|
80 |
|
|
81 |
qed_goalw "OUN_iff" thy [oex_def]
|
|
82 |
"b : (UN x<i. B(x)) <-> (EX x<i. b : B(x))"
|
4091
|
83 |
(fn _=> [ (fast_tac (claset() addIs [OUN_I] addSEs [OUN_E]) 1) ]);
|
2469
|
84 |
|
|
85 |
qed_goal "OUN_cong" thy
|
3840
|
86 |
"[| i=j; !!x. x<j ==> C(x)=D(x) |] ==> (UN x<i. C(x)) = (UN x<j. D(x))"
|
2469
|
87 |
(fn prems=>
|
|
88 |
[ rtac equality_iffI 1,
|
5529
|
89 |
simp_tac (simpset() addcongs [oex_cong] addsimps OUN_iff::prems) 1 ]);
|
2469
|
90 |
|
|
91 |
AddSIs [oallI];
|
|
92 |
AddIs [oexI, OUN_I];
|
|
93 |
AddSEs [oexE, OUN_E];
|
|
94 |
AddEs [rev_oallE];
|
|
95 |
|
6093
|
96 |
val Ord_atomize = atomize (("OrdQuant.oall", [ospec])::ZF_conn_pairs,
|
2469
|
97 |
ZF_mem_pairs);
|
|
98 |
|
5553
|
99 |
simpset_ref() := simpset() setmksimps (map mk_eq o Ord_atomize o gen_all)
|
2469
|
100 |
addsimps [oall_simp, ltD RS beta]
|
|
101 |
addcongs [oall_cong, oex_cong, OUN_cong];
|
|
102 |
|
|
103 |
val major::prems = goalw thy [lt_def, oall_def]
|
|
104 |
"[| i<k; !!x.[| x<k; ALL y<x. P(y) |] ==> P(x) \
|
|
105 |
\ |] ==> P(i)";
|
|
106 |
by (rtac (major RS conjE) 1);
|
|
107 |
by (etac Ord_induct 1 THEN assume_tac 1);
|
4091
|
108 |
by (fast_tac (claset() addIs prems) 1);
|
2469
|
109 |
qed "lt_induct";
|
|
110 |
|