| author | krauss | 
| Mon, 27 Jun 2011 17:04:04 +0200 | |
| changeset 43580 | 023a1d1f97bd | 
| parent 41798 | c3aa3c87ef21 | 
| child 44687 | 20deab90494e | 
| permissions | -rw-r--r-- | 
| 33189 | 1 | header {* Simply-typed lambda-calculus with let and tuple patterns *}
 | 
| 2 | ||
| 3 | theory Pattern | |
| 4 | imports Nominal | |
| 5 | begin | |
| 6 | ||
| 7 | no_syntax | |
| 8 |   "_Map" :: "maplets => 'a ~=> 'b"  ("(1[_])")
 | |
| 9 | ||
| 10 | atom_decl name | |
| 11 | ||
| 12 | nominal_datatype ty = | |
| 13 | Atom nat | |
| 14 | | Arrow ty ty (infixr "\<rightarrow>" 200) | |
| 15 | | TupleT ty ty (infixr "\<otimes>" 210) | |
| 16 | ||
| 17 | lemma fresh_type [simp]: "(a::name) \<sharp> (T::ty)" | |
| 18 | by (induct T rule: ty.induct) (simp_all add: fresh_nat) | |
| 19 | ||
| 20 | lemma supp_type [simp]: "supp (T::ty) = ({} :: name set)"
 | |
| 21 | by (induct T rule: ty.induct) (simp_all add: ty.supp supp_nat) | |
| 22 | ||
| 23 | lemma perm_type: "(pi::name prm) \<bullet> (T::ty) = T" | |
| 24 | by (induct T rule: ty.induct) (simp_all add: perm_nat_def) | |
| 25 | ||
| 26 | nominal_datatype trm = | |
| 27 | Var name | |
| 28 |   | Tuple trm trm  ("(1'\<langle>_,/ _'\<rangle>)")
 | |
| 29 | | Abs ty "\<guillemotleft>name\<guillemotright>trm" | |
| 30 | | App trm trm (infixl "\<cdot>" 200) | |
| 31 | | Let ty trm btrm | |
| 32 | and btrm = | |
| 33 | Base trm | |
| 34 | | Bind ty "\<guillemotleft>name\<guillemotright>btrm" | |
| 35 | ||
| 36 | abbreviation | |
| 37 |   Abs_syn :: "name \<Rightarrow> ty \<Rightarrow> trm \<Rightarrow> trm"  ("(3\<lambda>_:_./ _)" [0, 0, 10] 10) 
 | |
| 38 | where | |
| 39 | "\<lambda>x:T. t \<equiv> Abs T x t" | |
| 40 | ||
| 41 | datatype pat = | |
| 42 | PVar name ty | |
| 43 |   | PTuple pat pat  ("(1'\<langle>\<langle>_,/ _'\<rangle>\<rangle>)")
 | |
| 44 | ||
| 45 | (* FIXME: The following should be done automatically by the nominal package *) | |
| 46 | overloading pat_perm \<equiv> "perm :: name prm \<Rightarrow> pat \<Rightarrow> pat" (unchecked) | |
| 47 | begin | |
| 48 | ||
| 49 | primrec pat_perm | |
| 50 | where | |
| 51 | "pat_perm pi (PVar x ty) = PVar (pi \<bullet> x) (pi \<bullet> ty)" | |
| 52 | | "pat_perm pi \<langle>\<langle>p, q\<rangle>\<rangle> = \<langle>\<langle>pat_perm pi p, pat_perm pi q\<rangle>\<rangle>" | |
| 53 | ||
| 54 | end | |
| 55 | ||
| 56 | declare pat_perm.simps [eqvt] | |
| 57 | ||
| 58 | lemma supp_PVar [simp]: "((supp (PVar x T))::name set) = supp x" | |
| 59 | by (simp add: supp_def perm_fresh_fresh) | |
| 60 | ||
| 61 | lemma supp_PTuple [simp]: "((supp \<langle>\<langle>p, q\<rangle>\<rangle>)::name set) = supp p \<union> supp q" | |
| 62 | by (simp add: supp_def Collect_disj_eq del: disj_not1) | |
| 63 | ||
| 64 | instance pat :: pt_name | |
| 65 | proof intro_classes | |
| 66 | case goal1 | |
| 67 | show ?case by (induct x) simp_all | |
| 68 | next | |
| 69 | case goal2 | |
| 70 | show ?case by (induct x) (simp_all add: pt_name2) | |
| 71 | next | |
| 72 | case goal3 | |
| 73 | then show ?case by (induct x) (simp_all add: pt_name3) | |
| 74 | qed | |
| 75 | ||
| 76 | instance pat :: fs_name | |
| 77 | proof intro_classes | |
| 78 | case goal1 | |
| 79 | show ?case by (induct x) (simp_all add: fin_supp) | |
| 80 | qed | |
| 81 | ||
| 82 | (* the following function cannot be defined using nominal_primrec, *) | |
| 83 | (* since variable parameters are currently not allowed. *) | |
| 84 | primrec abs_pat :: "pat \<Rightarrow> btrm \<Rightarrow> btrm" ("(3\<lambda>[_]./ _)" [0, 10] 10)
 | |
| 85 | where | |
| 86 | "(\<lambda>[PVar x T]. t) = Bind T x t" | |
| 87 | | "(\<lambda>[\<langle>\<langle>p, q\<rangle>\<rangle>]. t) = (\<lambda>[p]. \<lambda>[q]. t)" | |
| 88 | ||
| 89 | lemma abs_pat_eqvt [eqvt]: | |
| 90 | "(pi :: name prm) \<bullet> (\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. (pi \<bullet> t))" | |
| 91 | by (induct p arbitrary: t) simp_all | |
| 92 | ||
| 93 | lemma abs_pat_fresh [simp]: | |
| 94 | "(x::name) \<sharp> (\<lambda>[p]. t) = (x \<in> supp p \<or> x \<sharp> t)" | |
| 95 | by (induct p arbitrary: t) (simp_all add: abs_fresh supp_atm) | |
| 96 | ||
| 97 | lemma abs_pat_alpha: | |
| 98 | assumes fresh: "((pi::name prm) \<bullet> supp p::name set) \<sharp>* t" | |
| 99 | and pi: "set pi \<subseteq> supp p \<times> pi \<bullet> supp p" | |
| 100 | shows "(\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. pi \<bullet> t)" | |
| 101 | proof - | |
| 102 | note pt_name_inst at_name_inst pi | |
| 103 | moreover have "(supp p::name set) \<sharp>* (\<lambda>[p]. t)" | |
| 104 | by (simp add: fresh_star_def) | |
| 105 | moreover from fresh | |
| 106 | have "(pi \<bullet> supp p::name set) \<sharp>* (\<lambda>[p]. t)" | |
| 107 | by (simp add: fresh_star_def) | |
| 108 | ultimately have "pi \<bullet> (\<lambda>[p]. t) = (\<lambda>[p]. t)" | |
| 109 | by (rule pt_freshs_freshs) | |
| 110 | then show ?thesis by (simp add: eqvts) | |
| 111 | qed | |
| 112 | ||
| 113 | primrec pat_vars :: "pat \<Rightarrow> name list" | |
| 114 | where | |
| 115 | "pat_vars (PVar x T) = [x]" | |
| 116 | | "pat_vars \<langle>\<langle>p, q\<rangle>\<rangle> = pat_vars q @ pat_vars p" | |
| 117 | ||
| 118 | lemma pat_vars_eqvt [eqvt]: | |
| 119 | "(pi :: name prm) \<bullet> (pat_vars p) = pat_vars (pi \<bullet> p)" | |
| 120 | by (induct p rule: pat.induct) (simp_all add: eqvts) | |
| 121 | ||
| 122 | lemma set_pat_vars_supp: "set (pat_vars p) = supp p" | |
| 123 | by (induct p) (auto simp add: supp_atm) | |
| 124 | ||
| 125 | lemma distinct_eqvt [eqvt]: | |
| 126 | "(pi :: name prm) \<bullet> (distinct (xs::name list)) = distinct (pi \<bullet> xs)" | |
| 127 | by (induct xs) (simp_all add: eqvts) | |
| 128 | ||
| 129 | primrec pat_type :: "pat \<Rightarrow> ty" | |
| 130 | where | |
| 131 | "pat_type (PVar x T) = T" | |
| 132 | | "pat_type \<langle>\<langle>p, q\<rangle>\<rangle> = pat_type p \<otimes> pat_type q" | |
| 133 | ||
| 134 | lemma pat_type_eqvt [eqvt]: | |
| 135 | "(pi :: name prm) \<bullet> (pat_type p) = pat_type (pi \<bullet> p)" | |
| 136 | by (induct p) simp_all | |
| 137 | ||
| 138 | lemma pat_type_perm_eq: "pat_type ((pi :: name prm) \<bullet> p) = pat_type p" | |
| 139 | by (induct p) (simp_all add: perm_type) | |
| 140 | ||
| 41798 | 141 | type_synonym ctx = "(name \<times> ty) list" | 
| 33189 | 142 | |
| 143 | inductive | |
| 144 |   ptyping :: "pat \<Rightarrow> ty \<Rightarrow> ctx \<Rightarrow> bool"  ("\<turnstile> _ : _ \<Rightarrow> _" [60, 60, 60] 60)
 | |
| 145 | where | |
| 146 | PVar: "\<turnstile> PVar x T : T \<Rightarrow> [(x, T)]" | |
| 147 | | PTuple: "\<turnstile> p : T \<Rightarrow> \<Delta>\<^isub>1 \<Longrightarrow> \<turnstile> q : U \<Rightarrow> \<Delta>\<^isub>2 \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> : T \<otimes> U \<Rightarrow> \<Delta>\<^isub>2 @ \<Delta>\<^isub>1" | |
| 148 | ||
| 149 | lemma pat_vars_ptyping: | |
| 150 | assumes "\<turnstile> p : T \<Rightarrow> \<Delta>" | |
| 151 | shows "pat_vars p = map fst \<Delta>" using assms | |
| 152 | by induct simp_all | |
| 153 | ||
| 154 | inductive | |
| 155 | valid :: "ctx \<Rightarrow> bool" | |
| 156 | where | |
| 157 | Nil [intro!]: "valid []" | |
| 158 | | Cons [intro!]: "valid \<Gamma> \<Longrightarrow> x \<sharp> \<Gamma> \<Longrightarrow> valid ((x, T) # \<Gamma>)" | |
| 159 | ||
| 160 | inductive_cases validE[elim!]: "valid ((x, T) # \<Gamma>)" | |
| 161 | ||
| 162 | lemma fresh_ctxt_set_eq: "((x::name) \<sharp> (\<Gamma>::ctx)) = (x \<notin> fst ` set \<Gamma>)" | |
| 163 | by (induct \<Gamma>) (auto simp add: fresh_list_nil fresh_list_cons fresh_prod fresh_atm) | |
| 164 | ||
| 165 | lemma valid_distinct: "valid \<Gamma> = distinct (map fst \<Gamma>)" | |
| 166 | by (induct \<Gamma>) (auto simp add: fresh_ctxt_set_eq [symmetric]) | |
| 167 | ||
| 168 | abbreviation | |
| 169 |   "sub_ctx" :: "ctx \<Rightarrow> ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _") 
 | |
| 170 | where | |
| 171 | "\<Gamma>\<^isub>1 \<sqsubseteq> \<Gamma>\<^isub>2 \<equiv> \<forall>x. x \<in> set \<Gamma>\<^isub>1 \<longrightarrow> x \<in> set \<Gamma>\<^isub>2" | |
| 172 | ||
| 173 | abbreviation | |
| 174 |   Let_syn :: "pat \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"  ("(LET (_ =/ _)/ IN (_))" 10)
 | |
| 175 | where | |
| 176 | "LET p = t IN u \<equiv> Let (pat_type p) t (\<lambda>[p]. Base u)" | |
| 177 | ||
| 178 | inductive typing :: "ctx \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60)
 | |
| 179 | where | |
| 180 | Var [intro]: "valid \<Gamma> \<Longrightarrow> (x, T) \<in> set \<Gamma> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T" | |
| 181 | | Tuple [intro]: "\<Gamma> \<turnstile> t : T \<Longrightarrow> \<Gamma> \<turnstile> u : U \<Longrightarrow> \<Gamma> \<turnstile> \<langle>t, u\<rangle> : T \<otimes> U" | |
| 182 | | Abs [intro]: "(x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>x:T. t) : T \<rightarrow> U" | |
| 183 | | App [intro]: "\<Gamma> \<turnstile> t : T \<rightarrow> U \<Longrightarrow> \<Gamma> \<turnstile> u : T \<Longrightarrow> \<Gamma> \<turnstile> t \<cdot> u : U" | |
| 184 | | Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow> | |
| 185 | \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow> | |
| 186 | \<Gamma> \<turnstile> (LET p = t IN u) : U" | |
| 187 | ||
| 188 | equivariance ptyping | |
| 189 | ||
| 190 | equivariance valid | |
| 191 | ||
| 192 | equivariance typing | |
| 193 | ||
| 194 | lemma valid_typing: | |
| 195 | assumes "\<Gamma> \<turnstile> t : T" | |
| 196 | shows "valid \<Gamma>" using assms | |
| 197 | by induct auto | |
| 198 | ||
| 199 | lemma pat_var: | |
| 200 | assumes "\<turnstile> p : T \<Rightarrow> \<Delta>" | |
| 201 | shows "(supp p::name set) = supp \<Delta>" using assms | |
| 202 | by induct (auto simp add: supp_list_nil supp_list_cons supp_prod supp_list_append) | |
| 203 | ||
| 204 | lemma valid_app_fresh: | |
| 205 | assumes "valid (\<Delta> @ \<Gamma>)" and "(x::name) \<in> supp \<Delta>" | |
| 206 | shows "x \<sharp> \<Gamma>" using assms | |
| 207 | by (induct \<Delta>) | |
| 208 | (auto simp add: supp_list_nil supp_list_cons supp_prod supp_atm fresh_list_append) | |
| 209 | ||
| 210 | lemma pat_freshs: | |
| 211 | assumes "\<turnstile> p : T \<Rightarrow> \<Delta>" | |
| 212 | shows "(supp p::name set) \<sharp>* c = (supp \<Delta>::name set) \<sharp>* c" using assms | |
| 213 | by (auto simp add: fresh_star_def pat_var) | |
| 214 | ||
| 215 | lemma valid_app_mono: | |
| 216 | assumes "valid (\<Delta> @ \<Gamma>\<^isub>1)" and "(supp \<Delta>::name set) \<sharp>* \<Gamma>\<^isub>2" and "valid \<Gamma>\<^isub>2" and "\<Gamma>\<^isub>1 \<sqsubseteq> \<Gamma>\<^isub>2" | |
| 217 | shows "valid (\<Delta> @ \<Gamma>\<^isub>2)" using assms | |
| 218 | by (induct \<Delta>) | |
| 219 | (auto simp add: supp_list_cons fresh_star_Un_elim supp_prod | |
| 220 | fresh_list_append supp_atm fresh_star_insert_elim fresh_star_empty_elim) | |
| 221 | ||
| 222 | nominal_inductive2 typing | |
| 223 | avoids | |
| 224 |   Abs: "{x}"
 | |
| 225 | | Let: "(supp p)::name set" | |
| 226 | by (auto simp add: fresh_star_def abs_fresh fin_supp pat_var | |
| 227 | dest!: valid_typing valid_app_fresh) | |
| 228 | ||
| 229 | lemma better_T_Let [intro]: | |
| 230 | assumes t: "\<Gamma> \<turnstile> t : T" and p: "\<turnstile> p : T \<Rightarrow> \<Delta>" and u: "\<Delta> @ \<Gamma> \<turnstile> u : U" | |
| 231 | shows "\<Gamma> \<turnstile> (LET p = t IN u) : U" | |
| 232 | proof - | |
| 233 | obtain pi::"name prm" where pi: "(pi \<bullet> (supp p::name set)) \<sharp>* (t, Base u, \<Gamma>)" | |
| 234 | and pi': "set pi \<subseteq> supp p \<times> (pi \<bullet> supp p)" | |
| 235 | by (rule at_set_avoiding [OF at_name_inst fin_supp fin_supp]) | |
| 236 | from p u have p_fresh: "(supp p::name set) \<sharp>* \<Gamma>" | |
| 237 | by (auto simp add: fresh_star_def pat_var dest!: valid_typing valid_app_fresh) | |
| 238 | from pi have p_fresh': "(pi \<bullet> (supp p::name set)) \<sharp>* \<Gamma>" | |
| 239 | by (simp add: fresh_star_prod_elim) | |
| 240 | from pi have p_fresh'': "(pi \<bullet> (supp p::name set)) \<sharp>* Base u" | |
| 241 | by (simp add: fresh_star_prod_elim) | |
| 242 | from pi have "(supp (pi \<bullet> p)::name set) \<sharp>* t" | |
| 243 | by (simp add: fresh_star_prod_elim eqvts) | |
| 244 | moreover note t | |
| 245 | moreover from p have "pi \<bullet> (\<turnstile> p : T \<Rightarrow> \<Delta>)" by (rule perm_boolI) | |
| 246 | then have "\<turnstile> (pi \<bullet> p) : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: eqvts perm_type) | |
| 247 | moreover from u have "pi \<bullet> (\<Delta> @ \<Gamma> \<turnstile> u : U)" by (rule perm_boolI) | |
| 248 | with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' p_fresh p_fresh'] | |
| 249 | have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> (pi \<bullet> u) : U" by (simp add: eqvts perm_type) | |
| 250 | ultimately have "\<Gamma> \<turnstile> (LET (pi \<bullet> p) = t IN (pi \<bullet> u)) : U" | |
| 251 | by (rule Let) | |
| 252 | then show ?thesis by (simp add: abs_pat_alpha [OF p_fresh'' pi'] pat_type_perm_eq) | |
| 253 | qed | |
| 254 | ||
| 255 | lemma weakening: | |
| 256 | assumes "\<Gamma>\<^isub>1 \<turnstile> t : T" and "valid \<Gamma>\<^isub>2" and "\<Gamma>\<^isub>1 \<sqsubseteq> \<Gamma>\<^isub>2" | |
| 257 | shows "\<Gamma>\<^isub>2 \<turnstile> t : T" using assms | |
| 258 | apply (nominal_induct \<Gamma>\<^isub>1 t T avoiding: \<Gamma>\<^isub>2 rule: typing.strong_induct) | |
| 259 | apply auto | |
| 260 | apply (drule_tac x="(x, T) # \<Gamma>\<^isub>2" in meta_spec) | |
| 261 | apply (auto intro: valid_typing) | |
| 262 | apply (drule_tac x="\<Gamma>\<^isub>2" in meta_spec) | |
| 263 | apply (drule_tac x="\<Delta> @ \<Gamma>\<^isub>2" in meta_spec) | |
| 264 | apply (auto intro: valid_typing) | |
| 265 | apply (rule typing.Let) | |
| 266 | apply assumption+ | |
| 267 | apply (drule meta_mp) | |
| 268 | apply (rule valid_app_mono) | |
| 269 | apply (rule valid_typing) | |
| 270 | apply assumption | |
| 271 | apply (auto simp add: pat_freshs) | |
| 272 | done | |
| 273 | ||
| 274 | inductive | |
| 275 |   match :: "pat \<Rightarrow> trm \<Rightarrow> (name \<times> trm) list \<Rightarrow> bool"  ("\<turnstile> _ \<rhd> _ \<Rightarrow> _" [50, 50, 50] 50)
 | |
| 276 | where | |
| 277 | PVar: "\<turnstile> PVar x T \<rhd> t \<Rightarrow> [(x, t)]" | |
| 278 | | PProd: "\<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> \<turnstile> q \<rhd> u \<Rightarrow> \<theta>' \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> \<langle>t, u\<rangle> \<Rightarrow> \<theta> @ \<theta>'" | |
| 279 | ||
| 280 | fun | |
| 281 | lookup :: "(name \<times> trm) list \<Rightarrow> name \<Rightarrow> trm" | |
| 282 | where | |
| 283 | "lookup [] x = Var x" | |
| 284 | | "lookup ((y, e) # \<theta>) x = (if x = y then e else lookup \<theta> x)" | |
| 285 | ||
| 286 | lemma lookup_eqvt[eqvt]: | |
| 287 | fixes pi :: "name prm" | |
| 288 | and \<theta> :: "(name \<times> trm) list" | |
| 289 | and X :: "name" | |
| 290 | shows "pi \<bullet> (lookup \<theta> X) = lookup (pi \<bullet> \<theta>) (pi \<bullet> X)" | |
| 291 | by (induct \<theta>) (auto simp add: eqvts) | |
| 292 | ||
| 293 | nominal_primrec | |
| 294 |   psubst :: "(name \<times> trm) list \<Rightarrow> trm \<Rightarrow> trm"  ("_\<lparr>_\<rparr>" [95,0] 210)
 | |
| 295 |   and psubstb :: "(name \<times> trm) list \<Rightarrow> btrm \<Rightarrow> btrm"  ("_\<lparr>_\<rparr>\<^sub>b" [95,0] 210)
 | |
| 296 | where | |
| 297 | "\<theta>\<lparr>Var x\<rparr> = (lookup \<theta> x)" | |
| 298 | | "\<theta>\<lparr>t \<cdot> u\<rparr> = \<theta>\<lparr>t\<rparr> \<cdot> \<theta>\<lparr>u\<rparr>" | |
| 299 | | "\<theta>\<lparr>\<langle>t, u\<rangle>\<rparr> = \<langle>\<theta>\<lparr>t\<rparr>, \<theta>\<lparr>u\<rparr>\<rangle>" | |
| 300 | | "\<theta>\<lparr>Let T t u\<rparr> = Let T (\<theta>\<lparr>t\<rparr>) (\<theta>\<lparr>u\<rparr>\<^sub>b)" | |
| 301 | | "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>x:T. t\<rparr> = (\<lambda>x:T. \<theta>\<lparr>t\<rparr>)" | |
| 302 | | "\<theta>\<lparr>Base t\<rparr>\<^sub>b = Base (\<theta>\<lparr>t\<rparr>)" | |
| 303 | | "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>Bind T x t\<rparr>\<^sub>b = Bind T x (\<theta>\<lparr>t\<rparr>\<^sub>b)" | |
| 304 | apply finite_guess+ | |
| 305 | apply (simp add: abs_fresh | fresh_guess)+ | |
| 306 | done | |
| 307 | ||
| 308 | lemma lookup_fresh: | |
| 309 | "x = y \<longrightarrow> x \<in> set (map fst \<theta>) \<Longrightarrow> \<forall>(y, t)\<in>set \<theta>. x \<sharp> t \<Longrightarrow> x \<sharp> lookup \<theta> y" | |
| 310 | apply (induct \<theta>) | |
| 311 | apply (simp_all add: split_paired_all fresh_atm) | |
| 312 | apply (case_tac "x = y") | |
| 313 | apply (auto simp add: fresh_atm) | |
| 314 | done | |
| 315 | ||
| 316 | lemma psubst_fresh: | |
| 317 | assumes "x \<in> set (map fst \<theta>)" and "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" | |
| 318 | shows "x \<sharp> \<theta>\<lparr>t\<rparr>" and "x \<sharp> \<theta>\<lparr>t'\<rparr>\<^sub>b" using assms | |
| 319 | apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts) | |
| 320 | apply simp | |
| 321 | apply (rule lookup_fresh) | |
| 322 | apply (rule impI) | |
| 323 | apply (simp_all add: abs_fresh) | |
| 324 | done | |
| 325 | ||
| 326 | lemma psubst_eqvt[eqvt]: | |
| 327 | fixes pi :: "name prm" | |
| 328 | shows "pi \<bullet> (\<theta>\<lparr>t\<rparr>) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t\<rparr>" | |
| 329 | and "pi \<bullet> (\<theta>\<lparr>t'\<rparr>\<^sub>b) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t'\<rparr>\<^sub>b" | |
| 330 | by (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts) | |
| 331 | (simp_all add: eqvts fresh_bij) | |
| 332 | ||
| 333 | abbreviation | |
| 334 |   subst :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_[_\<mapsto>_]" [100,0,0] 100)
 | |
| 335 | where | |
| 336 | "t[x\<mapsto>t'] \<equiv> [(x,t')]\<lparr>t\<rparr>" | |
| 337 | ||
| 338 | abbreviation | |
| 339 |   substb :: "btrm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> btrm" ("_[_\<mapsto>_]\<^sub>b" [100,0,0] 100)
 | |
| 340 | where | |
| 341 | "t[x\<mapsto>t']\<^sub>b \<equiv> [(x,t')]\<lparr>t\<rparr>\<^sub>b" | |
| 342 | ||
| 343 | lemma lookup_forget: | |
| 344 | "(supp (map fst \<theta>)::name set) \<sharp>* x \<Longrightarrow> lookup \<theta> x = Var x" | |
| 345 | by (induct \<theta>) (auto simp add: split_paired_all fresh_star_def fresh_atm supp_list_cons supp_atm) | |
| 346 | ||
| 347 | lemma supp_fst: "(x::name) \<in> supp (map fst (\<theta>::(name \<times> trm) list)) \<Longrightarrow> x \<in> supp \<theta>" | |
| 348 | by (induct \<theta>) (auto simp add: supp_list_nil supp_list_cons supp_prod) | |
| 349 | ||
| 350 | lemma psubst_forget: | |
| 351 | "(supp (map fst \<theta>)::name set) \<sharp>* t \<Longrightarrow> \<theta>\<lparr>t\<rparr> = t" | |
| 352 | "(supp (map fst \<theta>)::name set) \<sharp>* t' \<Longrightarrow> \<theta>\<lparr>t'\<rparr>\<^sub>b = t'" | |
| 353 | apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts) | |
| 354 | apply (auto simp add: fresh_star_def lookup_forget abs_fresh) | |
| 355 | apply (drule_tac x=\<theta> in meta_spec) | |
| 356 | apply (drule meta_mp) | |
| 357 | apply (rule ballI) | |
| 358 | apply (drule_tac x=x in bspec) | |
| 359 | apply assumption | |
| 360 | apply (drule supp_fst) | |
| 361 | apply (auto simp add: fresh_def) | |
| 362 | apply (drule_tac x=\<theta> in meta_spec) | |
| 363 | apply (drule meta_mp) | |
| 364 | apply (rule ballI) | |
| 365 | apply (drule_tac x=x in bspec) | |
| 366 | apply assumption | |
| 367 | apply (drule supp_fst) | |
| 368 | apply (auto simp add: fresh_def) | |
| 369 | done | |
| 370 | ||
| 371 | lemma psubst_nil: "[]\<lparr>t\<rparr> = t" "[]\<lparr>t'\<rparr>\<^sub>b = t'" | |
| 372 | by (induct t and t' rule: trm_btrm.inducts) (simp_all add: fresh_list_nil) | |
| 373 | ||
| 374 | lemma psubst_cons: | |
| 375 | assumes "(supp (map fst \<theta>)::name set) \<sharp>* u" | |
| 376 | shows "((x, u) # \<theta>)\<lparr>t\<rparr> = \<theta>\<lparr>t[x\<mapsto>u]\<rparr>" and "((x, u) # \<theta>)\<lparr>t'\<rparr>\<^sub>b = \<theta>\<lparr>t'[x\<mapsto>u]\<^sub>b\<rparr>\<^sub>b" | |
| 377 | using assms | |
| 378 | by (nominal_induct t and t' avoiding: x u \<theta> rule: trm_btrm.strong_inducts) | |
| 379 | (simp_all add: fresh_list_nil fresh_list_cons psubst_forget) | |
| 380 | ||
| 381 | lemma psubst_append: | |
| 382 | "(supp (map fst (\<theta>\<^isub>1 @ \<theta>\<^isub>2))::name set) \<sharp>* map snd (\<theta>\<^isub>1 @ \<theta>\<^isub>2) \<Longrightarrow> (\<theta>\<^isub>1 @ \<theta>\<^isub>2)\<lparr>t\<rparr> = \<theta>\<^isub>2\<lparr>\<theta>\<^isub>1\<lparr>t\<rparr>\<rparr>" | |
| 383 | by (induct \<theta>\<^isub>1 arbitrary: t) | |
| 384 | (simp_all add: psubst_nil split_paired_all supp_list_cons psubst_cons fresh_star_def | |
| 385 | fresh_list_cons fresh_list_append supp_list_append) | |
| 386 | ||
| 387 | lemma abs_pat_psubst [simp]: | |
| 388 | "(supp p::name set) \<sharp>* \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>[p]. t\<rparr>\<^sub>b = (\<lambda>[p]. \<theta>\<lparr>t\<rparr>\<^sub>b)" | |
| 389 | by (induct p arbitrary: t) (auto simp add: fresh_star_def supp_atm) | |
| 390 | ||
| 391 | lemma valid_insert: | |
| 392 | assumes "valid (\<Delta> @ [(x, T)] @ \<Gamma>)" | |
| 393 | shows "valid (\<Delta> @ \<Gamma>)" using assms | |
| 394 | by (induct \<Delta>) | |
| 395 | (auto simp add: fresh_list_append fresh_list_cons) | |
| 396 | ||
| 397 | lemma fresh_set: | |
| 398 | shows "y \<sharp> xs = (\<forall>x\<in>set xs. y \<sharp> x)" | |
| 399 | by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons) | |
| 400 | ||
| 401 | lemma context_unique: | |
| 402 | assumes "valid \<Gamma>" | |
| 403 | and "(x, T) \<in> set \<Gamma>" | |
| 404 | and "(x, U) \<in> set \<Gamma>" | |
| 405 | shows "T = U" using assms | |
| 406 | by induct (auto simp add: fresh_set fresh_prod fresh_atm) | |
| 407 | ||
| 408 | lemma subst_type_aux: | |
| 409 | assumes a: "\<Delta> @ [(x, U)] @ \<Gamma> \<turnstile> t : T" | |
| 410 | and b: "\<Gamma> \<turnstile> u : U" | |
| 411 | shows "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" using a b | |
| 412 | proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, U)] @ \<Gamma>" t T avoiding: x u \<Delta> rule: typing.strong_induct) | |
| 34915 | 413 | case (Var y T x u \<Delta>) | 
| 414 | from `valid (\<Delta> @ [(x, U)] @ \<Gamma>)` | |
| 415 | have valid: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert) | |
| 33189 | 416 | show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" | 
| 417 | proof cases | |
| 418 | assume eq: "x = y" | |
| 34915 | 419 | from Var eq have "T = U" by (auto intro: context_unique) | 
| 420 | with Var eq valid show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" by (auto intro: weakening) | |
| 33189 | 421 | next | 
| 422 | assume ineq: "x \<noteq> y" | |
| 34915 | 423 | from Var ineq have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" by simp | 
| 424 | then show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" using ineq valid by auto | |
| 33189 | 425 | qed | 
| 426 | next | |
| 34915 | 427 | case (Tuple t\<^isub>1 T\<^isub>1 t\<^isub>2 T\<^isub>2) | 
| 428 | from refl `\<Gamma> \<turnstile> u : U` | |
| 33189 | 429 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>1[x\<mapsto>u] : T\<^isub>1" by (rule Tuple) | 
| 34915 | 430 | moreover from refl `\<Gamma> \<turnstile> u : U` | 
| 33189 | 431 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>2[x\<mapsto>u] : T\<^isub>2" by (rule Tuple) | 
| 432 | ultimately have "\<Delta> @ \<Gamma> \<turnstile> \<langle>t\<^isub>1[x\<mapsto>u], t\<^isub>2[x\<mapsto>u]\<rangle> : T\<^isub>1 \<otimes> T\<^isub>2" .. | |
| 433 | then show ?case by simp | |
| 434 | next | |
| 34915 | 435 | case (Let p t T \<Delta>' s S) | 
| 436 | from refl `\<Gamma> \<turnstile> u : U` | |
| 33189 | 437 | have "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" by (rule Let) | 
| 438 | moreover note `\<turnstile> p : T \<Rightarrow> \<Delta>'` | |
| 34915 | 439 | moreover have "\<Delta>' @ (\<Delta> @ [(x, U)] @ \<Gamma>) = (\<Delta>' @ \<Delta>) @ [(x, U)] @ \<Gamma>" by simp | 
| 440 | then have "(\<Delta>' @ \<Delta>) @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" using `\<Gamma> \<turnstile> u : U` by (rule Let) | |
| 33189 | 441 | then have "\<Delta>' @ \<Delta> @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" by simp | 
| 442 | ultimately have "\<Delta> @ \<Gamma> \<turnstile> (LET p = t[x\<mapsto>u] IN s[x\<mapsto>u]) : S" | |
| 443 | by (rule better_T_Let) | |
| 444 | moreover from Let have "(supp p::name set) \<sharp>* [(x, u)]" | |
| 445 | by (simp add: fresh_star_def fresh_list_nil fresh_list_cons) | |
| 446 | ultimately show ?case by simp | |
| 447 | next | |
| 34915 | 448 | case (Abs y T t S) | 
| 449 | have "(y, T) # \<Delta> @ [(x, U)] @ \<Gamma> = ((y, T) # \<Delta>) @ [(x, U)] @ \<Gamma>" | |
| 33189 | 450 | by simp | 
| 34915 | 451 | then have "((y, T) # \<Delta>) @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" using `\<Gamma> \<turnstile> u : U` by (rule Abs) | 
| 33189 | 452 | then have "(y, T) # \<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" by simp | 
| 453 | then have "\<Delta> @ \<Gamma> \<turnstile> (\<lambda>y:T. t[x\<mapsto>u]) : T \<rightarrow> S" | |
| 454 | by (rule typing.Abs) | |
| 455 | moreover from Abs have "y \<sharp> [(x, u)]" | |
| 456 | by (simp add: fresh_list_nil fresh_list_cons) | |
| 457 | ultimately show ?case by simp | |
| 458 | next | |
| 34915 | 459 | case (App t\<^isub>1 T S t\<^isub>2) | 
| 460 | from refl `\<Gamma> \<turnstile> u : U` | |
| 33189 | 461 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>1[x\<mapsto>u] : T \<rightarrow> S" by (rule App) | 
| 34915 | 462 | moreover from refl `\<Gamma> \<turnstile> u : U` | 
| 33189 | 463 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>2[x\<mapsto>u] : T" by (rule App) | 
| 464 | ultimately have "\<Delta> @ \<Gamma> \<turnstile> (t\<^isub>1[x\<mapsto>u]) \<cdot> (t\<^isub>2[x\<mapsto>u]) : S" | |
| 465 | by (rule typing.App) | |
| 466 | then show ?case by simp | |
| 467 | qed | |
| 468 | ||
| 469 | lemmas subst_type = subst_type_aux [of "[]", simplified] | |
| 470 | ||
| 471 | lemma match_supp_fst: | |
| 472 | assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map fst \<theta>)::name set) = supp p" using assms | |
| 473 | by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append) | |
| 474 | ||
| 475 | lemma match_supp_snd: | |
| 476 | assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map snd \<theta>)::name set) = supp u" using assms | |
| 477 | by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append trm.supp) | |
| 478 | ||
| 479 | lemma match_fresh: "\<turnstile> p \<rhd> u \<Rightarrow> \<theta> \<Longrightarrow> (supp p::name set) \<sharp>* u \<Longrightarrow> | |
| 480 | (supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>" | |
| 481 | by (simp add: fresh_star_def fresh_def match_supp_fst match_supp_snd) | |
| 482 | ||
| 483 | lemma match_type_aux: | |
| 484 | assumes "\<turnstile> p : U \<Rightarrow> \<Delta>" | |
| 485 | and "\<Gamma>\<^isub>2 \<turnstile> u : U" | |
| 486 | and "\<Gamma>\<^isub>1 @ \<Delta> @ \<Gamma>\<^isub>2 \<turnstile> t : T" | |
| 487 | and "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" | |
| 488 | and "(supp p::name set) \<sharp>* u" | |
| 489 | shows "\<Gamma>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<lparr>t\<rparr> : T" using assms | |
| 490 | proof (induct arbitrary: \<Gamma>\<^isub>1 \<Gamma>\<^isub>2 t u T \<theta>) | |
| 491 | case (PVar x U) | |
| 492 | from `\<Gamma>\<^isub>1 @ [(x, U)] @ \<Gamma>\<^isub>2 \<turnstile> t : T` `\<Gamma>\<^isub>2 \<turnstile> u : U` | |
| 493 | have "\<Gamma>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> t[x\<mapsto>u] : T" by (rule subst_type_aux) | |
| 494 | moreover from `\<turnstile> PVar x U \<rhd> u \<Rightarrow> \<theta>` have "\<theta> = [(x, u)]" | |
| 495 | by cases simp_all | |
| 496 | ultimately show ?case by simp | |
| 497 | next | |
| 498 | case (PTuple p S \<Delta>\<^isub>1 q U \<Delta>\<^isub>2) | |
| 499 | from `\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>` obtain u\<^isub>1 u\<^isub>2 \<theta>\<^isub>1 \<theta>\<^isub>2 | |
| 500 | where u: "u = \<langle>u\<^isub>1, u\<^isub>2\<rangle>" and \<theta>: "\<theta> = \<theta>\<^isub>1 @ \<theta>\<^isub>2" | |
| 501 | and p: "\<turnstile> p \<rhd> u\<^isub>1 \<Rightarrow> \<theta>\<^isub>1" and q: "\<turnstile> q \<rhd> u\<^isub>2 \<Rightarrow> \<theta>\<^isub>2" | |
| 502 | by cases simp_all | |
| 503 | with PTuple have "\<Gamma>\<^isub>2 \<turnstile> \<langle>u\<^isub>1, u\<^isub>2\<rangle> : S \<otimes> U" by simp | |
| 504 | then obtain u\<^isub>1: "\<Gamma>\<^isub>2 \<turnstile> u\<^isub>1 : S" and u\<^isub>2: "\<Gamma>\<^isub>2 \<turnstile> u\<^isub>2 : U" | |
| 505 | by cases (simp_all add: ty.inject trm.inject) | |
| 506 | note u\<^isub>1 | |
| 507 | moreover from `\<Gamma>\<^isub>1 @ (\<Delta>\<^isub>2 @ \<Delta>\<^isub>1) @ \<Gamma>\<^isub>2 \<turnstile> t : T` | |
| 508 | have "(\<Gamma>\<^isub>1 @ \<Delta>\<^isub>2) @ \<Delta>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> t : T" by simp | |
| 509 | moreover note p | |
| 510 | moreover from `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u` and u | |
| 511 | have "(supp p::name set) \<sharp>* u\<^isub>1" by (simp add: fresh_star_def) | |
| 512 | ultimately have \<theta>\<^isub>1: "(\<Gamma>\<^isub>1 @ \<Delta>\<^isub>2) @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<^isub>1\<lparr>t\<rparr> : T" | |
| 513 | by (rule PTuple) | |
| 514 | note u\<^isub>2 | |
| 515 | moreover from \<theta>\<^isub>1 | |
| 516 | have "\<Gamma>\<^isub>1 @ \<Delta>\<^isub>2 @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<^isub>1\<lparr>t\<rparr> : T" by simp | |
| 517 | moreover note q | |
| 518 | moreover from `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u` and u | |
| 519 | have "(supp q::name set) \<sharp>* u\<^isub>2" by (simp add: fresh_star_def) | |
| 520 | ultimately have "\<Gamma>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<^isub>2\<lparr>\<theta>\<^isub>1\<lparr>t\<rparr>\<rparr> : T" | |
| 521 | by (rule PTuple) | |
| 522 | moreover from `\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>` `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u` | |
| 523 | have "(supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>" | |
| 524 | by (rule match_fresh) | |
| 525 | ultimately show ?case using \<theta> by (simp add: psubst_append) | |
| 526 | qed | |
| 527 | ||
| 528 | lemmas match_type = match_type_aux [where \<Gamma>\<^isub>1="[]", simplified] | |
| 529 | ||
| 530 | inductive eval :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<longmapsto> _" [60,60] 60)
 | |
| 531 | where | |
| 532 | TupleL: "t \<longmapsto> t' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t', u\<rangle>" | |
| 533 | | TupleR: "u \<longmapsto> u' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t, u'\<rangle>" | |
| 534 | | Abs: "t \<longmapsto> t' \<Longrightarrow> (\<lambda>x:T. t) \<longmapsto> (\<lambda>x:T. t')" | |
| 535 | | AppL: "t \<longmapsto> t' \<Longrightarrow> t \<cdot> u \<longmapsto> t' \<cdot> u" | |
| 536 | | AppR: "u \<longmapsto> u' \<Longrightarrow> t \<cdot> u \<longmapsto> t \<cdot> u'" | |
| 537 | | Beta: "x \<sharp> u \<Longrightarrow> (\<lambda>x:T. t) \<cdot> u \<longmapsto> t[x\<mapsto>u]" | |
| 538 | | Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow> distinct (pat_vars p) \<Longrightarrow> | |
| 539 | \<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> (LET p = t IN u) \<longmapsto> \<theta>\<lparr>u\<rparr>" | |
| 540 | ||
| 541 | equivariance match | |
| 542 | ||
| 543 | equivariance eval | |
| 544 | ||
| 545 | lemma match_vars: | |
| 546 | assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "x \<in> supp p" | |
| 547 | shows "x \<in> set (map fst \<theta>)" using assms | |
| 548 | by induct (auto simp add: supp_atm) | |
| 549 | ||
| 550 | lemma match_fresh_mono: | |
| 551 | assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "(x::name) \<sharp> t" | |
| 552 | shows "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" using assms | |
| 553 | by induct auto | |
| 554 | ||
| 555 | nominal_inductive2 eval | |
| 556 | avoids | |
| 557 |   Abs: "{x}"
 | |
| 558 | | Beta: "{x}"
 | |
| 559 | | Let: "(supp p)::name set" | |
| 560 | apply (simp_all add: fresh_star_def abs_fresh fin_supp) | |
| 561 | apply (rule psubst_fresh) | |
| 562 | apply simp | |
| 563 | apply simp | |
| 564 | apply (rule ballI) | |
| 565 | apply (rule psubst_fresh) | |
| 566 | apply (rule match_vars) | |
| 567 | apply assumption+ | |
| 568 | apply (rule match_fresh_mono) | |
| 569 | apply auto | |
| 570 | done | |
| 571 | ||
| 572 | lemma typing_case_Abs: | |
| 573 | assumes ty: "\<Gamma> \<turnstile> (\<lambda>x:T. t) : S" | |
| 574 | and fresh: "x \<sharp> \<Gamma>" | |
| 575 | and R: "\<And>U. S = T \<rightarrow> U \<Longrightarrow> (x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> P" | |
| 576 | shows P using ty | |
| 577 | proof cases | |
| 34990 | 578 | case (Abs x' T' t' U) | 
| 33189 | 579 | obtain y::name where y: "y \<sharp> (x, \<Gamma>, \<lambda>x':T'. t')" | 
| 580 | by (rule exists_fresh) (auto intro: fin_supp) | |
| 581 | from `(\<lambda>x:T. t) = (\<lambda>x':T'. t')` [symmetric] | |
| 582 | have x: "x \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh) | |
| 583 | have x': "x' \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh) | |
| 34990 | 584 | from `(x', T') # \<Gamma> \<turnstile> t' : U` have x'': "x' \<sharp> \<Gamma>" | 
| 33189 | 585 | by (auto dest: valid_typing) | 
| 586 | have "(\<lambda>x:T. t) = (\<lambda>x':T'. t')" by fact | |
| 587 | also from x x' y have "\<dots> = [(x, y)] \<bullet> [(x', y)] \<bullet> (\<lambda>x':T'. t')" | |
| 588 | by (simp only: perm_fresh_fresh fresh_prod) | |
| 589 | also have "\<dots> = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')" | |
| 590 | by (simp add: swap_simps perm_fresh_fresh) | |
| 591 | finally have "(\<lambda>x:T. t) = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')" . | |
| 592 | then have T: "T = T'" and t: "[(x, y)] \<bullet> [(x', y)] \<bullet> t' = t" | |
| 593 | by (simp_all add: trm.inject alpha) | |
| 594 | from Abs T have "S = T \<rightarrow> U" by simp | |
| 34990 | 595 | moreover from `(x', T') # \<Gamma> \<turnstile> t' : U` | 
| 596 | have "[(x, y)] \<bullet> [(x', y)] \<bullet> ((x', T') # \<Gamma> \<turnstile> t' : U)" | |
| 33189 | 597 | by (simp add: perm_bool) | 
| 34990 | 598 | with T t y x'' fresh have "(x, T) # \<Gamma> \<turnstile> t : U" | 
| 33189 | 599 | by (simp add: eqvts swap_simps perm_fresh_fresh fresh_prod) | 
| 600 | ultimately show ?thesis by (rule R) | |
| 601 | qed simp_all | |
| 602 | ||
| 603 | nominal_primrec ty_size :: "ty \<Rightarrow> nat" | |
| 604 | where | |
| 605 | "ty_size (Atom n) = 0" | |
| 606 | | "ty_size (T \<rightarrow> U) = ty_size T + ty_size U + 1" | |
| 607 | | "ty_size (T \<otimes> U) = ty_size T + ty_size U + 1" | |
| 608 | by (rule TrueI)+ | |
| 609 | ||
| 610 | lemma bind_tuple_ineq: | |
| 611 | "ty_size (pat_type p) < ty_size U \<Longrightarrow> Bind U x t \<noteq> (\<lambda>[p]. u)" | |
| 612 | by (induct p arbitrary: U x t u) (auto simp add: btrm.inject) | |
| 613 | ||
| 614 | lemma valid_appD: assumes "valid (\<Gamma> @ \<Delta>)" | |
| 615 | shows "valid \<Gamma>" "valid \<Delta>" using assms | |
| 616 | by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>) | |
| 617 | (auto simp add: Cons_eq_append_conv fresh_list_append) | |
| 618 | ||
| 619 | lemma valid_app_freshs: assumes "valid (\<Gamma> @ \<Delta>)" | |
| 620 | shows "(supp \<Gamma>::name set) \<sharp>* \<Delta>" "(supp \<Delta>::name set) \<sharp>* \<Gamma>" using assms | |
| 621 | by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>) | |
| 622 | (auto simp add: Cons_eq_append_conv fresh_star_def | |
| 623 | fresh_list_nil fresh_list_cons supp_list_nil supp_list_cons fresh_list_append | |
| 624 | supp_prod fresh_prod supp_atm fresh_atm | |
| 625 | dest: notE [OF iffD1 [OF fresh_def [THEN meta_eq_to_obj_eq]]]) | |
| 626 | ||
| 627 | lemma perm_mem_left: "(x::name) \<in> ((pi::name prm) \<bullet> A) \<Longrightarrow> (rev pi \<bullet> x) \<in> A" | |
| 628 | by (drule perm_boolI [of _ "rev pi"]) (simp add: eqvts perm_pi_simp) | |
| 629 | ||
| 630 | lemma perm_mem_right: "(rev (pi::name prm) \<bullet> (x::name)) \<in> A \<Longrightarrow> x \<in> (pi \<bullet> A)" | |
| 631 | by (drule perm_boolI [of _ pi]) (simp add: eqvts perm_pi_simp) | |
| 632 | ||
| 633 | lemma perm_cases: | |
| 634 | assumes pi: "set pi \<subseteq> A \<times> A" | |
| 635 | shows "((pi::name prm) \<bullet> B) \<subseteq> A \<union> B" | |
| 636 | proof | |
| 637 | fix x assume "x \<in> pi \<bullet> B" | |
| 638 | then show "x \<in> A \<union> B" using pi | |
| 639 | apply (induct pi arbitrary: x B rule: rev_induct) | |
| 640 | apply simp | |
| 641 | apply (simp add: split_paired_all supp_eqvt) | |
| 642 | apply (drule perm_mem_left) | |
| 643 | apply (simp add: calc_atm split: split_if_asm) | |
| 644 | apply (auto dest: perm_mem_right) | |
| 645 | done | |
| 646 | qed | |
| 647 | ||
| 648 | lemma abs_pat_alpha': | |
| 649 | assumes eq: "(\<lambda>[p]. t) = (\<lambda>[q]. u)" | |
| 650 | and ty: "pat_type p = pat_type q" | |
| 651 | and pv: "distinct (pat_vars p)" | |
| 652 | and qv: "distinct (pat_vars q)" | |
| 653 | shows "\<exists>pi::name prm. p = pi \<bullet> q \<and> t = pi \<bullet> u \<and> | |
| 654 | set pi \<subseteq> (supp p \<union> supp q) \<times> (supp p \<union> supp q)" | |
| 655 | using assms | |
| 656 | proof (induct p arbitrary: q t u \<Delta>) | |
| 657 | case (PVar x T) | |
| 658 | note PVar' = this | |
| 659 | show ?case | |
| 660 | proof (cases q) | |
| 661 | case (PVar x' T') | |
| 662 | with `(\<lambda>[PVar x T]. t) = (\<lambda>[q]. u)` | |
| 663 | have "x = x' \<and> t = u \<or> x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u" | |
| 664 | by (simp add: btrm.inject alpha) | |
| 665 | then show ?thesis | |
| 666 | proof | |
| 667 | assume "x = x' \<and> t = u" | |
| 668 | with PVar PVar' have "PVar x T = ([]::name prm) \<bullet> q \<and> | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 669 | t = ([]::name prm) \<bullet> u \<and> | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 670 | set ([]::name prm) \<subseteq> (supp (PVar x T) \<union> supp q) \<times> | 
| 33189 | 671 | (supp (PVar x T) \<union> supp q)" by simp | 
| 672 | then show ?thesis .. | |
| 673 | next | |
| 674 | assume "x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u" | |
| 675 | with PVar PVar' have "PVar x T = [(x, x')] \<bullet> q \<and> | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 676 | t = [(x, x')] \<bullet> u \<and> | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 677 | set [(x, x')] \<subseteq> (supp (PVar x T) \<union> supp q) \<times> | 
| 33189 | 678 | (supp (PVar x T) \<union> supp q)" | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 679 | by (simp add: perm_swap swap_simps supp_atm perm_type) | 
| 33189 | 680 | then show ?thesis .. | 
| 681 | qed | |
| 682 | next | |
| 683 | case (PTuple p\<^isub>1 p\<^isub>2) | |
| 684 | with PVar have "ty_size (pat_type p\<^isub>1) < ty_size T" by simp | |
| 685 | then have "Bind T x t \<noteq> (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. u)" | |
| 686 | by (rule bind_tuple_ineq) | |
| 687 | moreover from PTuple PVar | |
| 688 | have "Bind T x t = (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. u)" by simp | |
| 689 | ultimately show ?thesis .. | |
| 690 | qed | |
| 691 | next | |
| 692 | case (PTuple p\<^isub>1 p\<^isub>2) | |
| 693 | note PTuple' = this | |
| 694 | show ?case | |
| 695 | proof (cases q) | |
| 696 | case (PVar x T) | |
| 697 | with PTuple have "ty_size (pat_type p\<^isub>1) < ty_size T" by auto | |
| 698 | then have "Bind T x u \<noteq> (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. t)" | |
| 699 | by (rule bind_tuple_ineq) | |
| 700 | moreover from PTuple PVar | |
| 701 | have "Bind T x u = (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. t)" by simp | |
| 702 | ultimately show ?thesis .. | |
| 703 | next | |
| 704 | case (PTuple p\<^isub>1' p\<^isub>2') | |
| 705 | with PTuple' have "(\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. t) = (\<lambda>[p\<^isub>1']. \<lambda>[p\<^isub>2']. u)" by simp | |
| 706 | moreover from PTuple PTuple' have "pat_type p\<^isub>1 = pat_type p\<^isub>1'" | |
| 707 | by (simp add: ty.inject) | |
| 708 | moreover from PTuple' have "distinct (pat_vars p\<^isub>1)" by simp | |
| 709 | moreover from PTuple PTuple' have "distinct (pat_vars p\<^isub>1')" by simp | |
| 710 | ultimately have "\<exists>pi::name prm. p\<^isub>1 = pi \<bullet> p\<^isub>1' \<and> | |
| 711 | (\<lambda>[p\<^isub>2]. t) = pi \<bullet> (\<lambda>[p\<^isub>2']. u) \<and> | |
| 712 | set pi \<subseteq> (supp p\<^isub>1 \<union> supp p\<^isub>1') \<times> (supp p\<^isub>1 \<union> supp p\<^isub>1')" | |
| 713 | by (rule PTuple') | |
| 714 | then obtain pi::"name prm" where | |
| 715 | "p\<^isub>1 = pi \<bullet> p\<^isub>1'" "(\<lambda>[p\<^isub>2]. t) = pi \<bullet> (\<lambda>[p\<^isub>2']. u)" and | |
| 716 | pi: "set pi \<subseteq> (supp p\<^isub>1 \<union> supp p\<^isub>1') \<times> (supp p\<^isub>1 \<union> supp p\<^isub>1')" by auto | |
| 717 | from `(\<lambda>[p\<^isub>2]. t) = pi \<bullet> (\<lambda>[p\<^isub>2']. u)` | |
| 718 | have "(\<lambda>[p\<^isub>2]. t) = (\<lambda>[pi \<bullet> p\<^isub>2']. pi \<bullet> u)" | |
| 719 | by (simp add: eqvts) | |
| 720 | moreover from PTuple PTuple' have "pat_type p\<^isub>2 = pat_type (pi \<bullet> p\<^isub>2')" | |
| 721 | by (simp add: ty.inject pat_type_perm_eq) | |
| 722 | moreover from PTuple' have "distinct (pat_vars p\<^isub>2)" by simp | |
| 723 | moreover from PTuple PTuple' have "distinct (pat_vars (pi \<bullet> p\<^isub>2'))" | |
| 724 | by (simp add: pat_vars_eqvt [symmetric] distinct_eqvt [symmetric]) | |
| 725 | ultimately have "\<exists>pi'::name prm. p\<^isub>2 = pi' \<bullet> pi \<bullet> p\<^isub>2' \<and> | |
| 726 | t = pi' \<bullet> pi \<bullet> u \<and> | |
| 727 | set pi' \<subseteq> (supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2')) \<times> (supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2'))" | |
| 728 | by (rule PTuple') | |
| 729 | then obtain pi'::"name prm" where | |
| 730 | "p\<^isub>2 = pi' \<bullet> pi \<bullet> p\<^isub>2'" "t = pi' \<bullet> pi \<bullet> u" and | |
| 731 | pi': "set pi' \<subseteq> (supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2')) \<times> | |
| 732 | (supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2'))" by auto | |
| 733 | from PTuple PTuple' have "pi \<bullet> distinct (pat_vars \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>)" by simp | |
| 734 | then have "distinct (pat_vars \<langle>\<langle>pi \<bullet> p\<^isub>1', pi \<bullet> p\<^isub>2'\<rangle>\<rangle>)" by (simp only: eqvts) | |
| 735 | with `p\<^isub>1 = pi \<bullet> p\<^isub>1'` PTuple' | |
| 736 | have fresh: "(supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2') :: name set) \<sharp>* p\<^isub>1" | |
| 737 | by (auto simp add: set_pat_vars_supp fresh_star_def fresh_def eqvts) | |
| 738 | from `p\<^isub>1 = pi \<bullet> p\<^isub>1'` have "pi' \<bullet> (p\<^isub>1 = pi \<bullet> p\<^isub>1')" by (rule perm_boolI) | |
| 739 | with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' fresh fresh] | |
| 740 | have "p\<^isub>1 = pi' \<bullet> pi \<bullet> p\<^isub>1'" by (simp add: eqvts) | |
| 741 | with `p\<^isub>2 = pi' \<bullet> pi \<bullet> p\<^isub>2'` have "\<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>" | |
| 742 | by (simp add: pt_name2) | |
| 743 | moreover | |
| 744 | have "((supp p\<^isub>2 \<union> (pi \<bullet> supp p\<^isub>2')) \<times> (supp p\<^isub>2 \<union> (pi \<bullet> supp p\<^isub>2'))::(name \<times> name) set) \<subseteq> | |
| 745 | (supp p\<^isub>2 \<union> (supp p\<^isub>1 \<union> supp p\<^isub>1' \<union> supp p\<^isub>2')) \<times> (supp p\<^isub>2 \<union> (supp p\<^isub>1 \<union> supp p\<^isub>1' \<union> supp p\<^isub>2'))" | |
| 746 | by (rule subset_refl Sigma_mono Un_mono perm_cases [OF pi])+ | |
| 747 | with pi' have "set pi' \<subseteq> \<dots>" by (simp add: supp_eqvt [symmetric]) | |
| 748 | with pi have "set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>) \<times> | |
| 749 | (supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>)" | |
| 750 | by (simp add: Sigma_Un_distrib1 Sigma_Un_distrib2 Un_ac) blast | |
| 751 | moreover note `t = pi' \<bullet> pi \<bullet> u` | |
| 752 | ultimately have "\<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> q \<and> t = (pi' @ pi) \<bullet> u \<and> | |
| 753 | set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp q) \<times> | |
| 754 | (supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp q)" using PTuple | |
| 755 | by (simp add: pt_name2) | |
| 756 | then show ?thesis .. | |
| 757 | qed | |
| 758 | qed | |
| 759 | ||
| 760 | lemma typing_case_Let: | |
| 761 | assumes ty: "\<Gamma> \<turnstile> (LET p = t IN u) : U" | |
| 762 | and fresh: "(supp p::name set) \<sharp>* \<Gamma>" | |
| 763 | and distinct: "distinct (pat_vars p)" | |
| 764 | and R: "\<And>T \<Delta>. \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow> P" | |
| 765 | shows P using ty | |
| 766 | proof cases | |
| 34990 | 767 | case (Let p' t' T \<Delta> u') | 
| 33189 | 768 | then have "(supp \<Delta>::name set) \<sharp>* \<Gamma>" | 
| 769 | by (auto intro: valid_typing valid_app_freshs) | |
| 770 | with Let have "(supp p'::name set) \<sharp>* \<Gamma>" | |
| 771 | by (simp add: pat_var) | |
| 772 | with fresh have fresh': "(supp p \<union> supp p' :: name set) \<sharp>* \<Gamma>" | |
| 773 | by (auto simp add: fresh_star_def) | |
| 774 | from Let have "(\<lambda>[p]. Base u) = (\<lambda>[p']. Base u')" | |
| 775 | by (simp add: trm.inject) | |
| 776 | moreover from Let have "pat_type p = pat_type p'" | |
| 777 | by (simp add: trm.inject) | |
| 778 | moreover note distinct | |
| 34990 | 779 | moreover from `\<Delta> @ \<Gamma> \<turnstile> u' : U` have "valid (\<Delta> @ \<Gamma>)" | 
| 33189 | 780 | by (rule valid_typing) | 
| 781 | then have "valid \<Delta>" by (rule valid_appD) | |
| 782 | with `\<turnstile> p' : T \<Rightarrow> \<Delta>` have "distinct (pat_vars p')" | |
| 783 | by (simp add: valid_distinct pat_vars_ptyping) | |
| 784 | ultimately have "\<exists>pi::name prm. p = pi \<bullet> p' \<and> Base u = pi \<bullet> Base u' \<and> | |
| 785 | set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')" | |
| 786 | by (rule abs_pat_alpha') | |
| 787 | then obtain pi::"name prm" where pi: "p = pi \<bullet> p'" "u = pi \<bullet> u'" | |
| 788 | and pi': "set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')" | |
| 789 | by (auto simp add: btrm.inject) | |
| 790 | from Let have "\<Gamma> \<turnstile> t : T" by (simp add: trm.inject) | |
| 791 | moreover from `\<turnstile> p' : T \<Rightarrow> \<Delta>` have "\<turnstile> (pi \<bullet> p') : (pi \<bullet> T) \<Rightarrow> (pi \<bullet> \<Delta>)" | |
| 792 | by (simp add: ptyping.eqvt) | |
| 793 | with pi have "\<turnstile> p : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: perm_type) | |
| 794 | moreover from Let | |
| 795 | have "(pi \<bullet> \<Delta>) @ (pi \<bullet> \<Gamma>) \<turnstile> (pi \<bullet> u') : (pi \<bullet> U)" | |
| 796 | by (simp add: append_eqvt [symmetric] typing.eqvt) | |
| 797 | with pi have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> u : U" | |
| 798 | by (simp add: perm_type pt_freshs_freshs | |
| 799 | [OF pt_name_inst at_name_inst pi' fresh' fresh']) | |
| 800 | ultimately show ?thesis by (rule R) | |
| 801 | qed simp_all | |
| 802 | ||
| 803 | lemma preservation: | |
| 804 | assumes "t \<longmapsto> t'" and "\<Gamma> \<turnstile> t : T" | |
| 805 | shows "\<Gamma> \<turnstile> t' : T" using assms | |
| 806 | proof (nominal_induct avoiding: \<Gamma> T rule: eval.strong_induct) | |
| 807 | case (TupleL t t' u) | |
| 808 | from `\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T` obtain T\<^isub>1 T\<^isub>2 | |
| 809 | where "T = T\<^isub>1 \<otimes> T\<^isub>2" "\<Gamma> \<turnstile> t : T\<^isub>1" "\<Gamma> \<turnstile> u : T\<^isub>2" | |
| 810 | by cases (simp_all add: trm.inject) | |
| 811 | from `\<Gamma> \<turnstile> t : T\<^isub>1` have "\<Gamma> \<turnstile> t' : T\<^isub>1" by (rule TupleL) | |
| 812 | then have "\<Gamma> \<turnstile> \<langle>t', u\<rangle> : T\<^isub>1 \<otimes> T\<^isub>2" using `\<Gamma> \<turnstile> u : T\<^isub>2` | |
| 813 | by (rule Tuple) | |
| 814 | with `T = T\<^isub>1 \<otimes> T\<^isub>2` show ?case by simp | |
| 815 | next | |
| 816 | case (TupleR u u' t) | |
| 817 | from `\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T` obtain T\<^isub>1 T\<^isub>2 | |
| 818 | where "T = T\<^isub>1 \<otimes> T\<^isub>2" "\<Gamma> \<turnstile> t : T\<^isub>1" "\<Gamma> \<turnstile> u : T\<^isub>2" | |
| 819 | by cases (simp_all add: trm.inject) | |
| 820 | from `\<Gamma> \<turnstile> u : T\<^isub>2` have "\<Gamma> \<turnstile> u' : T\<^isub>2" by (rule TupleR) | |
| 821 | with `\<Gamma> \<turnstile> t : T\<^isub>1` have "\<Gamma> \<turnstile> \<langle>t, u'\<rangle> : T\<^isub>1 \<otimes> T\<^isub>2" | |
| 822 | by (rule Tuple) | |
| 823 | with `T = T\<^isub>1 \<otimes> T\<^isub>2` show ?case by simp | |
| 824 | next | |
| 825 | case (Abs t t' x S) | |
| 826 | from `\<Gamma> \<turnstile> (\<lambda>x:S. t) : T` `x \<sharp> \<Gamma>` obtain U where | |
| 827 | T: "T = S \<rightarrow> U" and U: "(x, S) # \<Gamma> \<turnstile> t : U" | |
| 828 | by (rule typing_case_Abs) | |
| 829 | from U have "(x, S) # \<Gamma> \<turnstile> t' : U" by (rule Abs) | |
| 830 | then have "\<Gamma> \<turnstile> (\<lambda>x:S. t') : S \<rightarrow> U" | |
| 831 | by (rule typing.Abs) | |
| 832 | with T show ?case by simp | |
| 833 | next | |
| 834 | case (Beta x u S t) | |
| 835 | from `\<Gamma> \<turnstile> (\<lambda>x:S. t) \<cdot> u : T` `x \<sharp> \<Gamma>` | |
| 836 | obtain "(x, S) # \<Gamma> \<turnstile> t : T" and "\<Gamma> \<turnstile> u : S" | |
| 837 | by cases (auto simp add: trm.inject ty.inject elim: typing_case_Abs) | |
| 838 | then show ?case by (rule subst_type) | |
| 839 | next | |
| 840 | case (Let p t \<theta> u) | |
| 841 | from `\<Gamma> \<turnstile> (LET p = t IN u) : T` `supp p \<sharp>* \<Gamma>` `distinct (pat_vars p)` | |
| 842 | obtain U \<Delta> where "\<turnstile> p : U \<Rightarrow> \<Delta>" "\<Gamma> \<turnstile> t : U" "\<Delta> @ \<Gamma> \<turnstile> u : T" | |
| 843 | by (rule typing_case_Let) | |
| 844 | then show ?case using `\<turnstile> p \<rhd> t \<Rightarrow> \<theta>` `supp p \<sharp>* t` | |
| 845 | by (rule match_type) | |
| 846 | next | |
| 847 | case (AppL t t' u) | |
| 848 | from `\<Gamma> \<turnstile> t \<cdot> u : T` obtain U where | |
| 849 | t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U" | |
| 850 | by cases (auto simp add: trm.inject) | |
| 851 | from t have "\<Gamma> \<turnstile> t' : U \<rightarrow> T" by (rule AppL) | |
| 852 | then show ?case using u by (rule typing.App) | |
| 853 | next | |
| 854 | case (AppR u u' t) | |
| 855 | from `\<Gamma> \<turnstile> t \<cdot> u : T` obtain U where | |
| 856 | t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U" | |
| 857 | by cases (auto simp add: trm.inject) | |
| 858 | from u have "\<Gamma> \<turnstile> u' : U" by (rule AppR) | |
| 859 | with t show ?case by (rule typing.App) | |
| 860 | qed | |
| 861 | ||
| 862 | end |