| author | lcp | 
| Thu, 03 Feb 1994 16:06:55 +0100 | |
| changeset 262 | 024b242bc26f | 
| parent 243 | c22b85994e17 | 
| child 892 | d0dc8d057929 | 
| permissions | -rw-r--r-- | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1 | (* Title: HOLCF/ssum0.ML | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 3 | Author: Franz Regensburger | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 6 | Lemmas for theory ssum0.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 9 | open Ssum0; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 10 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 11 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 12 | (* A non-emptyness result for Sssum *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 13 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 14 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 15 | val SsumIl = prove_goalw Ssum0.thy [Ssum_def] "Sinl_Rep(a):Ssum" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 17 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 18 | (rtac CollectI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 19 | (rtac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 20 | (rtac exI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 21 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 22 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 24 | val SsumIr = prove_goalw Ssum0.thy [Ssum_def] "Sinr_Rep(a):Ssum" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 25 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 26 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 27 | (rtac CollectI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 28 | (rtac disjI2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 29 | (rtac exI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 30 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 31 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 32 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 33 | val inj_onto_Abs_Ssum = prove_goal Ssum0.thy "inj_onto(Abs_Ssum,Ssum)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 34 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 35 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 36 | (rtac inj_onto_inverseI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 37 | (etac Abs_Ssum_inverse 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 38 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 39 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 40 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 41 | (* Strictness of Sinr_Rep, Sinl_Rep and Isinl, Isinr *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 42 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 43 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 44 | val strict_SinlSinr_Rep = prove_goalw Ssum0.thy [Sinr_Rep_def,Sinl_Rep_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 45 | "Sinl_Rep(UU) = Sinr_Rep(UU)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 46 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 47 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 48 | (rtac ext 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 49 | (rtac ext 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 50 | (rtac ext 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 51 | (fast_tac HOL_cs 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 52 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 53 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 54 | val strict_IsinlIsinr = prove_goalw Ssum0.thy [Isinl_def,Isinr_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 55 | "Isinl(UU) = Isinr(UU)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 56 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 57 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 58 | (rtac (strict_SinlSinr_Rep RS arg_cong) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 59 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 60 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 61 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 62 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 63 | (* distinctness of Sinl_Rep, Sinr_Rep and Isinl, Isinr *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 64 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 65 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 66 | val noteq_SinlSinr_Rep = prove_goalw Ssum0.thy [Sinl_Rep_def,Sinr_Rep_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 67 | "(Sinl_Rep(a) = Sinr_Rep(b)) ==> a=UU & b=UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 68 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 69 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 70 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 71 | 	(res_inst_tac [("Q","a=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 72 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 73 | (rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong RS iffD2 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 74 | RS mp RS conjunct1 RS sym) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 75 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 76 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 77 | 	(res_inst_tac [("Q","b=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 78 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 79 | (rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong RS iffD1 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 80 | RS mp RS conjunct1 RS sym) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 81 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 82 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 83 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 84 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 85 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 86 | val noteq_IsinlIsinr = prove_goalw Ssum0.thy [Isinl_def,Isinr_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 87 | "Isinl(a)=Isinr(b) ==> a=UU & b=UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 88 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 89 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 90 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 91 | (rtac noteq_SinlSinr_Rep 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 92 | (etac (inj_onto_Abs_Ssum RS inj_ontoD) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 93 | (rtac SsumIl 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 94 | (rtac SsumIr 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 95 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 96 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 97 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 98 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 99 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 100 | (* injectivity of Sinl_Rep, Sinr_Rep and Isinl, Isinr *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 101 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 102 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 103 | val inject_Sinl_Rep1 = prove_goalw Ssum0.thy [Sinl_Rep_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 104 | "(Sinl_Rep(a) = Sinl_Rep(UU)) ==> a=UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 105 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 106 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 107 | 	(res_inst_tac [("Q","a=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 108 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 109 | (rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 110 | RS iffD2 RS mp RS conjunct1 RS sym) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 111 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 112 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 113 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 114 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 115 | val inject_Sinr_Rep1 = prove_goalw Ssum0.thy [Sinr_Rep_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 116 | "(Sinr_Rep(b) = Sinr_Rep(UU)) ==> b=UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 117 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 118 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 119 | 	(res_inst_tac [("Q","b=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 120 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 121 | (rtac ((hd prems) RS fun_cong RS fun_cong RS fun_cong | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 122 | RS iffD2 RS mp RS conjunct1 RS sym) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 123 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 124 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 125 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 126 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 127 | val inject_Sinl_Rep2 = prove_goalw Ssum0.thy [Sinl_Rep_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 128 | "[|~a1=UU ; ~a2=UU ; Sinl_Rep(a1)=Sinl_Rep(a2) |] ==> a1=a2" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 129 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 130 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 131 | (rtac ((nth_elem (2,prems)) RS fun_cong RS fun_cong RS fun_cong | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 132 | RS iffD1 RS mp RS conjunct1) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 133 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 134 | (resolve_tac prems 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 135 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 136 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 137 | val inject_Sinr_Rep2 = prove_goalw Ssum0.thy [Sinr_Rep_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 138 | "[|~b1=UU ; ~b2=UU ; Sinr_Rep(b1)=Sinr_Rep(b2) |] ==> b1=b2" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 139 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 140 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 141 | (rtac ((nth_elem (2,prems)) RS fun_cong RS fun_cong RS fun_cong | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 142 | RS iffD1 RS mp RS conjunct1) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 143 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 144 | (resolve_tac prems 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 145 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 146 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 147 | val inject_Sinl_Rep = prove_goal Ssum0.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 148 | "Sinl_Rep(a1)=Sinl_Rep(a2) ==> a1=a2" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 149 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 150 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 151 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 152 | 	(res_inst_tac [("Q","a1=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 153 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 154 | (rtac (inject_Sinl_Rep1 RS sym) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 155 | (etac sym 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 156 | 	(res_inst_tac [("Q","a2=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 157 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 158 | (etac inject_Sinl_Rep1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 159 | (etac inject_Sinl_Rep2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 160 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 161 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 162 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 163 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 164 | val inject_Sinr_Rep = prove_goal Ssum0.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 165 | "Sinr_Rep(b1)=Sinr_Rep(b2) ==> b1=b2" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 166 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 167 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 168 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 169 | 	(res_inst_tac [("Q","b1=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 170 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 171 | (rtac (inject_Sinr_Rep1 RS sym) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 172 | (etac sym 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 173 | 	(res_inst_tac [("Q","b2=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 174 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 175 | (etac inject_Sinr_Rep1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 176 | (etac inject_Sinr_Rep2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 177 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 178 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 179 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 180 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 181 | val inject_Isinl = prove_goalw Ssum0.thy [Isinl_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 182 | "Isinl(a1)=Isinl(a2)==> a1=a2" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 183 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 184 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 185 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 186 | (rtac inject_Sinl_Rep 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 187 | (etac (inj_onto_Abs_Ssum RS inj_ontoD) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 188 | (rtac SsumIl 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 189 | (rtac SsumIl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 190 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 191 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 192 | val inject_Isinr = prove_goalw Ssum0.thy [Isinr_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 193 | "Isinr(b1)=Isinr(b2) ==> b1=b2" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 194 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 195 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 196 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 197 | (rtac inject_Sinr_Rep 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 198 | (etac (inj_onto_Abs_Ssum RS inj_ontoD) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 199 | (rtac SsumIr 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 200 | (rtac SsumIr 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 201 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 202 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 203 | val inject_Isinl_rev = prove_goal Ssum0.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 204 | "~a1=a2 ==> ~Isinl(a1) = Isinl(a2)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 205 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 206 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 207 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 208 | (rtac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 209 | (etac inject_Isinl 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 210 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 211 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 212 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 213 | val inject_Isinr_rev = prove_goal Ssum0.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 214 | "~b1=b2 ==> ~Isinr(b1) = Isinr(b2)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 215 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 216 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 217 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 218 | (rtac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 219 | (etac inject_Isinr 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 220 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 221 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 222 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 223 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 224 | (* Exhaustion of the strict sum ++ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 225 | (* choice of the bottom representation is arbitrary *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 226 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 227 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 228 | val Exh_Ssum = prove_goalw Ssum0.thy [Isinl_def,Isinr_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 229 | "z=Isinl(UU) | (? a. z=Isinl(a) & ~a=UU) | (? b. z=Isinr(b) & ~b=UU)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 230 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 231 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 232 | (rtac (rewrite_rule [Ssum_def] Rep_Ssum RS CollectE) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 233 | (etac disjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 234 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 235 | 	(res_inst_tac [("Q","z= Abs_Ssum(Sinl_Rep(UU))")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 236 | (etac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 237 | (rtac disjI2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 238 | (rtac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 239 | (rtac exI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 240 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 241 | (rtac (Rep_Ssum_inverse RS sym RS trans) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 242 | (etac arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 243 | 	(res_inst_tac [("Q","Sinl_Rep(a)=Sinl_Rep(UU)")] contrapos 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 244 | (etac arg_cong 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 245 | (etac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 246 | (rtac (Rep_Ssum_inverse RS sym RS trans) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 247 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 248 | (etac arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 249 | (etac arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 250 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 251 | 	(res_inst_tac [("Q","z= Abs_Ssum(Sinl_Rep(UU))")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 252 | (etac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 253 | (rtac disjI2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 254 | (rtac disjI2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 255 | (rtac exI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 256 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 257 | (rtac (Rep_Ssum_inverse RS sym RS trans) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 258 | (etac arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 259 | 	(res_inst_tac [("Q","Sinr_Rep(b)=Sinl_Rep(UU)")] contrapos 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 260 | (hyp_subst_tac 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 261 | (rtac (strict_SinlSinr_Rep RS sym) 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 262 | (etac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 263 | (rtac (Rep_Ssum_inverse RS sym RS trans) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 264 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 265 | (etac arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 266 | (etac arg_cong 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 267 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 268 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 269 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 270 | (* elimination rules for the strict sum ++ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 271 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 272 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 273 | val IssumE = prove_goal Ssum0.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 274 | "[|p=Isinl(UU) ==> Q ;\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 275 | \ !!x.[|p=Isinl(x); ~x=UU |] ==> Q;\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 276 | \ !!y.[|p=Isinr(y); ~y=UU |] ==> Q|] ==> Q" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 277 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 278 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 279 | (rtac (Exh_Ssum RS disjE) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 280 | (etac disjE 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 281 | (eresolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 282 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 283 | (etac conjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 284 | (eresolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 285 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 286 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 287 | (etac conjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 288 | (eresolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 289 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 290 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 291 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 292 | val IssumE2 = prove_goal Ssum0.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 293 | "[| !!x. [| p = Isinl(x) |] ==> Q; !!y. [| p = Isinr(y) |] ==> Q |] ==>Q" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 294 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 295 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 296 | (rtac IssumE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 297 | (eresolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 298 | (eresolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 299 | (eresolve_tac prems 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 300 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 301 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 302 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 303 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 304 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 305 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 306 | (* rewrites for Iwhen *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 307 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 308 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 309 | val Iwhen1 = prove_goalw Ssum0.thy [Iwhen_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 310 | "Iwhen(f)(g)(Isinl(UU)) = UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 311 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 312 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 313 | (rtac select_equality 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 314 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 315 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 316 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 317 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 318 | 	(res_inst_tac [("P","a=UU")] notE 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 319 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 320 | (rtac inject_Isinl 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 321 | (rtac sym 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 322 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 323 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 324 | 	(res_inst_tac [("P","b=UU")] notE 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 325 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 326 | (rtac inject_Isinr 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 327 | (rtac sym 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 328 | (rtac (strict_IsinlIsinr RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 329 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 330 | (fast_tac HOL_cs 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 331 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 332 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 333 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 334 | val Iwhen2 = prove_goalw Ssum0.thy [Iwhen_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 335 | "~x=UU ==> Iwhen(f)(g)(Isinl(x)) = f[x]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 336 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 337 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 338 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 339 | (rtac select_equality 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 340 | (fast_tac HOL_cs 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 341 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 342 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 343 | 	(res_inst_tac [("P","x=UU")] notE 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 344 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 345 | (rtac inject_Isinl 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 346 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 347 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 348 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 349 | (rtac cfun_arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 350 | (rtac inject_Isinl 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 351 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 352 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 353 | 	(res_inst_tac [("P","Isinl(x) = Isinr(b)")] notE 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 354 | (fast_tac HOL_cs 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 355 | (rtac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 356 | (etac noteq_IsinlIsinr 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 357 | (fast_tac HOL_cs 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 358 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 359 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 360 | val Iwhen3 = prove_goalw Ssum0.thy [Iwhen_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 361 | "~y=UU ==> Iwhen(f)(g)(Isinr(y)) = g[y]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 362 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 363 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 364 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 365 | (rtac select_equality 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 366 | (fast_tac HOL_cs 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 367 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 368 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 369 | 	(res_inst_tac [("P","y=UU")] notE 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 370 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 371 | (rtac inject_Isinr 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 372 | (rtac (strict_IsinlIsinr RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 373 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 374 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 375 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 376 | 	(res_inst_tac [("P","Isinr(y) = Isinl(a)")] notE 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 377 | (fast_tac HOL_cs 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 378 | (rtac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 379 | (etac (sym RS noteq_IsinlIsinr) 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 380 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 381 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 382 | (rtac cfun_arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 383 | (rtac inject_Isinr 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 384 | (fast_tac HOL_cs 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 385 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 386 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 387 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 388 | (* instantiate the simplifier *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 389 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 390 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 391 | val Ssum_ss = Cfun_ss addsimps | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 392 | [(strict_IsinlIsinr RS sym),Iwhen1,Iwhen2,Iwhen3]; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 393 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 394 |