author | paulson <lp15@cam.ac.uk> |
Sat, 04 Dec 2021 20:30:16 +0000 | |
changeset 74878 | 0263787a06b4 |
parent 69593 | 3dda49e08b9d |
child 75937 | 02b18f59f903 |
permissions | -rw-r--r-- |
50023
28f3263d4d1b
refined stack of library theories implementing int and/or nat by target language numerals
haftmann
parents:
47108
diff
changeset
|
1 |
(* Title: HOL/Library/Code_Binary_Nat.thy |
51113
222fb6cb2c3e
factored out shared preprocessor setup into theory Code_Abstract_Nat, tuning descriptions
haftmann
parents:
50023
diff
changeset
|
2 |
Author: Florian Haftmann, TU Muenchen |
47108 | 3 |
*) |
4 |
||
60500 | 5 |
section \<open>Implementation of natural numbers as binary numerals\<close> |
47108 | 6 |
|
50023
28f3263d4d1b
refined stack of library theories implementing int and/or nat by target language numerals
haftmann
parents:
47108
diff
changeset
|
7 |
theory Code_Binary_Nat |
51113
222fb6cb2c3e
factored out shared preprocessor setup into theory Code_Abstract_Nat, tuning descriptions
haftmann
parents:
50023
diff
changeset
|
8 |
imports Code_Abstract_Nat |
47108 | 9 |
begin |
10 |
||
60500 | 11 |
text \<open> |
47108 | 12 |
When generating code for functions on natural numbers, the |
69593 | 13 |
canonical representation using \<^term>\<open>0::nat\<close> and |
14 |
\<^term>\<open>Suc\<close> is unsuitable for computations involving large |
|
47108 | 15 |
numbers. This theory refines the representation of |
16 |
natural numbers for code generation to use binary |
|
17 |
numerals, which do not grow linear in size but logarithmic. |
|
60500 | 18 |
\<close> |
47108 | 19 |
|
60500 | 20 |
subsection \<open>Representation\<close> |
47108 | 21 |
|
50023
28f3263d4d1b
refined stack of library theories implementing int and/or nat by target language numerals
haftmann
parents:
47108
diff
changeset
|
22 |
code_datatype "0::nat" nat_of_num |
28f3263d4d1b
refined stack of library theories implementing int and/or nat by target language numerals
haftmann
parents:
47108
diff
changeset
|
23 |
|
47108 | 24 |
lemma [code]: |
25 |
"num_of_nat 0 = Num.One" |
|
26 |
"num_of_nat (nat_of_num k) = k" |
|
27 |
by (simp_all add: nat_of_num_inverse) |
|
28 |
||
29 |
lemma [code]: |
|
61076 | 30 |
"(1::nat) = Numeral1" |
47108 | 31 |
by simp |
32 |
||
61076 | 33 |
lemma [code_abbrev]: "Numeral1 = (1::nat)" |
47108 | 34 |
by simp |
35 |
||
36 |
lemma [code]: |
|
37 |
"Suc n = n + 1" |
|
38 |
by simp |
|
39 |
||
40 |
||
60500 | 41 |
subsection \<open>Basic arithmetic\<close> |
47108 | 42 |
|
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
61076
diff
changeset
|
43 |
context |
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
61076
diff
changeset
|
44 |
begin |
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
61076
diff
changeset
|
45 |
|
66148 | 46 |
declare [[code drop: "plus :: nat \<Rightarrow> _"]] |
47108 | 47 |
|
48 |
lemma plus_nat_code [code]: |
|
49 |
"nat_of_num k + nat_of_num l = nat_of_num (k + l)" |
|
50 |
"m + 0 = (m::nat)" |
|
51 |
"0 + n = (n::nat)" |
|
52 |
by (simp_all add: nat_of_num_numeral) |
|
53 |
||
60500 | 54 |
text \<open>Bounded subtraction needs some auxiliary\<close> |
47108 | 55 |
|
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
61076
diff
changeset
|
56 |
qualified definition dup :: "nat \<Rightarrow> nat" where |
47108 | 57 |
"dup n = n + n" |
58 |
||
59 |
lemma dup_code [code]: |
|
60 |
"dup 0 = 0" |
|
61 |
"dup (nat_of_num k) = nat_of_num (Num.Bit0 k)" |
|
50023
28f3263d4d1b
refined stack of library theories implementing int and/or nat by target language numerals
haftmann
parents:
47108
diff
changeset
|
62 |
by (simp_all add: dup_def numeral_Bit0) |
47108 | 63 |
|
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
61076
diff
changeset
|
64 |
qualified definition sub :: "num \<Rightarrow> num \<Rightarrow> nat option" where |
47108 | 65 |
"sub k l = (if k \<ge> l then Some (numeral k - numeral l) else None)" |
66 |
||
67 |
lemma sub_code [code]: |
|
68 |
"sub Num.One Num.One = Some 0" |
|
69 |
"sub (Num.Bit0 m) Num.One = Some (nat_of_num (Num.BitM m))" |
|
70 |
"sub (Num.Bit1 m) Num.One = Some (nat_of_num (Num.Bit0 m))" |
|
71 |
"sub Num.One (Num.Bit0 n) = None" |
|
72 |
"sub Num.One (Num.Bit1 n) = None" |
|
55466 | 73 |
"sub (Num.Bit0 m) (Num.Bit0 n) = map_option dup (sub m n)" |
74 |
"sub (Num.Bit1 m) (Num.Bit1 n) = map_option dup (sub m n)" |
|
75 |
"sub (Num.Bit1 m) (Num.Bit0 n) = map_option (\<lambda>q. dup q + 1) (sub m n)" |
|
47108 | 76 |
"sub (Num.Bit0 m) (Num.Bit1 n) = (case sub m n of None \<Rightarrow> None |
77 |
| Some q \<Rightarrow> if q = 0 then None else Some (dup q - 1))" |
|
78 |
apply (auto simp add: nat_of_num_numeral |
|
79 |
Num.dbl_def Num.dbl_inc_def Num.dbl_dec_def |
|
80 |
Let_def le_imp_diff_is_add BitM_plus_one sub_def dup_def) |
|
81 |
apply (simp_all add: sub_non_positive) |
|
82 |
apply (simp_all add: sub_non_negative [symmetric, where ?'a = int]) |
|
83 |
done |
|
84 |
||
66148 | 85 |
declare [[code drop: "minus :: nat \<Rightarrow> _"]] |
47108 | 86 |
|
87 |
lemma minus_nat_code [code]: |
|
88 |
"nat_of_num k - nat_of_num l = (case sub k l of None \<Rightarrow> 0 | Some j \<Rightarrow> j)" |
|
89 |
"m - 0 = (m::nat)" |
|
90 |
"0 - n = (0::nat)" |
|
91 |
by (simp_all add: nat_of_num_numeral sub_non_positive sub_def) |
|
92 |
||
66148 | 93 |
declare [[code drop: "times :: nat \<Rightarrow> _"]] |
47108 | 94 |
|
95 |
lemma times_nat_code [code]: |
|
96 |
"nat_of_num k * nat_of_num l = nat_of_num (k * l)" |
|
97 |
"m * 0 = (0::nat)" |
|
98 |
"0 * n = (0::nat)" |
|
99 |
by (simp_all add: nat_of_num_numeral) |
|
100 |
||
66148 | 101 |
declare [[code drop: "HOL.equal :: nat \<Rightarrow> _"]] |
47108 | 102 |
|
103 |
lemma equal_nat_code [code]: |
|
104 |
"HOL.equal 0 (0::nat) \<longleftrightarrow> True" |
|
105 |
"HOL.equal 0 (nat_of_num l) \<longleftrightarrow> False" |
|
106 |
"HOL.equal (nat_of_num k) 0 \<longleftrightarrow> False" |
|
107 |
"HOL.equal (nat_of_num k) (nat_of_num l) \<longleftrightarrow> HOL.equal k l" |
|
108 |
by (simp_all add: nat_of_num_numeral equal) |
|
109 |
||
110 |
lemma equal_nat_refl [code nbe]: |
|
111 |
"HOL.equal (n::nat) n \<longleftrightarrow> True" |
|
112 |
by (rule equal_refl) |
|
113 |
||
66148 | 114 |
declare [[code drop: "less_eq :: nat \<Rightarrow> _"]] |
47108 | 115 |
|
116 |
lemma less_eq_nat_code [code]: |
|
117 |
"0 \<le> (n::nat) \<longleftrightarrow> True" |
|
118 |
"nat_of_num k \<le> 0 \<longleftrightarrow> False" |
|
119 |
"nat_of_num k \<le> nat_of_num l \<longleftrightarrow> k \<le> l" |
|
120 |
by (simp_all add: nat_of_num_numeral) |
|
121 |
||
66148 | 122 |
declare [[code drop: "less :: nat \<Rightarrow> _"]] |
47108 | 123 |
|
124 |
lemma less_nat_code [code]: |
|
125 |
"(m::nat) < 0 \<longleftrightarrow> False" |
|
126 |
"0 < nat_of_num l \<longleftrightarrow> True" |
|
127 |
"nat_of_num k < nat_of_num l \<longleftrightarrow> k < l" |
|
128 |
by (simp_all add: nat_of_num_numeral) |
|
129 |
||
66148 | 130 |
declare [[code drop: Divides.divmod_nat]] |
53069
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents:
52435
diff
changeset
|
131 |
|
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents:
52435
diff
changeset
|
132 |
lemma divmod_nat_code [code]: |
61433
a4c0de1df3d8
qualify some names stemming from internal bootstrap constructions
haftmann
parents:
61115
diff
changeset
|
133 |
"Divides.divmod_nat (nat_of_num k) (nat_of_num l) = divmod k l" |
a4c0de1df3d8
qualify some names stemming from internal bootstrap constructions
haftmann
parents:
61115
diff
changeset
|
134 |
"Divides.divmod_nat m 0 = (0, m)" |
a4c0de1df3d8
qualify some names stemming from internal bootstrap constructions
haftmann
parents:
61115
diff
changeset
|
135 |
"Divides.divmod_nat 0 n = (0, 0)" |
60868
dd18c33c001e
direct bootstrap of integer division from natural division
haftmann
parents:
60500
diff
changeset
|
136 |
by (simp_all add: prod_eq_iff nat_of_num_numeral) |
53069
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents:
52435
diff
changeset
|
137 |
|
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
61076
diff
changeset
|
138 |
end |
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
61076
diff
changeset
|
139 |
|
47108 | 140 |
|
60500 | 141 |
subsection \<open>Conversions\<close> |
47108 | 142 |
|
66148 | 143 |
declare [[code drop: of_nat]] |
47108 | 144 |
|
145 |
lemma of_nat_code [code]: |
|
146 |
"of_nat 0 = 0" |
|
147 |
"of_nat (nat_of_num k) = numeral k" |
|
148 |
by (simp_all add: nat_of_num_numeral) |
|
149 |
||
150 |
||
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
51143
diff
changeset
|
151 |
code_identifier |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
51143
diff
changeset
|
152 |
code_module Code_Binary_Nat \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
51143
diff
changeset
|
153 |
(SML) Arith and (OCaml) Arith and (Haskell) Arith |
47108 | 154 |
|
155 |
end |