author | paulson <lp15@cam.ac.uk> |
Sat, 04 Dec 2021 20:30:16 +0000 | |
changeset 74878 | 0263787a06b4 |
parent 64267 | b9a1486e79be |
permissions | -rw-r--r-- |
63972 | 1 |
(* Title: HOL/Library/Product_Plus.thy |
30018 | 2 |
Author: Brian Huffman |
3 |
*) |
|
4 |
||
60500 | 5 |
section \<open>Additive group operations on product types\<close> |
30018 | 6 |
|
63972 | 7 |
theory Product_Plus |
51301 | 8 |
imports Main |
30018 | 9 |
begin |
10 |
||
60500 | 11 |
subsection \<open>Operations\<close> |
30018 | 12 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
13 |
instantiation prod :: (zero, zero) zero |
30018 | 14 |
begin |
15 |
||
16 |
definition zero_prod_def: "0 = (0, 0)" |
|
17 |
||
18 |
instance .. |
|
19 |
end |
|
20 |
||
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
21 |
instantiation prod :: (plus, plus) plus |
30018 | 22 |
begin |
23 |
||
24 |
definition plus_prod_def: |
|
25 |
"x + y = (fst x + fst y, snd x + snd y)" |
|
26 |
||
27 |
instance .. |
|
28 |
end |
|
29 |
||
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
30 |
instantiation prod :: (minus, minus) minus |
30018 | 31 |
begin |
32 |
||
33 |
definition minus_prod_def: |
|
34 |
"x - y = (fst x - fst y, snd x - snd y)" |
|
35 |
||
36 |
instance .. |
|
37 |
end |
|
38 |
||
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
39 |
instantiation prod :: (uminus, uminus) uminus |
30018 | 40 |
begin |
41 |
||
42 |
definition uminus_prod_def: |
|
43 |
"- x = (- fst x, - snd x)" |
|
44 |
||
45 |
instance .. |
|
46 |
end |
|
47 |
||
48 |
lemma fst_zero [simp]: "fst 0 = 0" |
|
49 |
unfolding zero_prod_def by simp |
|
50 |
||
51 |
lemma snd_zero [simp]: "snd 0 = 0" |
|
52 |
unfolding zero_prod_def by simp |
|
53 |
||
54 |
lemma fst_add [simp]: "fst (x + y) = fst x + fst y" |
|
55 |
unfolding plus_prod_def by simp |
|
56 |
||
57 |
lemma snd_add [simp]: "snd (x + y) = snd x + snd y" |
|
58 |
unfolding plus_prod_def by simp |
|
59 |
||
60 |
lemma fst_diff [simp]: "fst (x - y) = fst x - fst y" |
|
61 |
unfolding minus_prod_def by simp |
|
62 |
||
63 |
lemma snd_diff [simp]: "snd (x - y) = snd x - snd y" |
|
64 |
unfolding minus_prod_def by simp |
|
65 |
||
66 |
lemma fst_uminus [simp]: "fst (- x) = - fst x" |
|
67 |
unfolding uminus_prod_def by simp |
|
68 |
||
69 |
lemma snd_uminus [simp]: "snd (- x) = - snd x" |
|
70 |
unfolding uminus_prod_def by simp |
|
71 |
||
72 |
lemma add_Pair [simp]: "(a, b) + (c, d) = (a + c, b + d)" |
|
73 |
unfolding plus_prod_def by simp |
|
74 |
||
75 |
lemma diff_Pair [simp]: "(a, b) - (c, d) = (a - c, b - d)" |
|
76 |
unfolding minus_prod_def by simp |
|
77 |
||
78 |
lemma uminus_Pair [simp, code]: "- (a, b) = (- a, - b)" |
|
79 |
unfolding uminus_prod_def by simp |
|
80 |
||
60500 | 81 |
subsection \<open>Class instances\<close> |
30018 | 82 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
83 |
instance prod :: (semigroup_add, semigroup_add) semigroup_add |
60679 | 84 |
by standard (simp add: prod_eq_iff add.assoc) |
30018 | 85 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
86 |
instance prod :: (ab_semigroup_add, ab_semigroup_add) ab_semigroup_add |
60679 | 87 |
by standard (simp add: prod_eq_iff add.commute) |
30018 | 88 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
89 |
instance prod :: (monoid_add, monoid_add) monoid_add |
60679 | 90 |
by standard (simp_all add: prod_eq_iff) |
30018 | 91 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
92 |
instance prod :: (comm_monoid_add, comm_monoid_add) comm_monoid_add |
60679 | 93 |
by standard (simp add: prod_eq_iff) |
30018 | 94 |
|
60679 | 95 |
instance prod :: (cancel_semigroup_add, cancel_semigroup_add) cancel_semigroup_add |
96 |
by standard (simp_all add: prod_eq_iff) |
|
30018 | 97 |
|
60679 | 98 |
instance prod :: (cancel_ab_semigroup_add, cancel_ab_semigroup_add) cancel_ab_semigroup_add |
99 |
by standard (simp_all add: prod_eq_iff diff_diff_eq) |
|
30018 | 100 |
|
60679 | 101 |
instance prod :: (cancel_comm_monoid_add, cancel_comm_monoid_add) cancel_comm_monoid_add .. |
30018 | 102 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
103 |
instance prod :: (group_add, group_add) group_add |
60679 | 104 |
by standard (simp_all add: prod_eq_iff) |
30018 | 105 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37664
diff
changeset
|
106 |
instance prod :: (ab_group_add, ab_group_add) ab_group_add |
60679 | 107 |
by standard (simp_all add: prod_eq_iff) |
30018 | 108 |
|
64267 | 109 |
lemma fst_sum: "fst (\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. fst (f x))" |
60679 | 110 |
proof (cases "finite A") |
111 |
case True |
|
112 |
then show ?thesis by induct simp_all |
|
113 |
next |
|
114 |
case False |
|
115 |
then show ?thesis by simp |
|
116 |
qed |
|
36627 | 117 |
|
64267 | 118 |
lemma snd_sum: "snd (\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. snd (f x))" |
60679 | 119 |
proof (cases "finite A") |
120 |
case True |
|
121 |
then show ?thesis by induct simp_all |
|
122 |
next |
|
123 |
case False |
|
124 |
then show ?thesis by simp |
|
125 |
qed |
|
36627 | 126 |
|
64267 | 127 |
lemma sum_prod: "(\<Sum>x\<in>A. (f x, g x)) = (\<Sum>x\<in>A. f x, \<Sum>x\<in>A. g x)" |
60679 | 128 |
proof (cases "finite A") |
129 |
case True |
|
130 |
then show ?thesis by induct (simp_all add: zero_prod_def) |
|
131 |
next |
|
132 |
case False |
|
133 |
then show ?thesis by (simp add: zero_prod_def) |
|
134 |
qed |
|
37664 | 135 |
|
30018 | 136 |
end |