| author | haftmann | 
| Mon, 12 Jul 2010 16:19:15 +0200 | |
| changeset 37772 | 026ed2fc15d4 | 
| parent 36350 | bc7982c54e37 | 
| child 41340 | 9b3f25c934c8 | 
| permissions | -rw-r--r-- | 
| 31719 | 1  | 
(* Title: Binomial.thy  | 
2  | 
Authors: Lawrence C. Paulson, Jeremy Avigad, Tobias Nipkow  | 
|
3  | 
||
4  | 
||
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
5  | 
Defines the "choose" function, and establishes basic properties.  | 
| 31719 | 6  | 
|
7  | 
The original theory "Binomial" was by Lawrence C. Paulson, based on  | 
|
8  | 
the work of Andy Gordon and Florian Kammueller. The approach here,  | 
|
9  | 
which derives the definition of binomial coefficients in terms of the  | 
|
10  | 
factorial function, is due to Jeremy Avigad. The binomial theorem was  | 
|
11  | 
formalized by Tobias Nipkow.  | 
|
12  | 
||
13  | 
*)  | 
|
14  | 
||
15  | 
||
16  | 
header {* Binomial *}
 | 
|
17  | 
||
18  | 
theory Binomial  | 
|
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
19  | 
imports Cong Fact  | 
| 31719 | 20  | 
begin  | 
21  | 
||
22  | 
||
23  | 
subsection {* Main definitions *}
 | 
|
24  | 
||
25  | 
class binomial =  | 
|
26  | 
||
27  | 
fixes  | 
|
28  | 
binomial :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "choose" 65)  | 
|
29  | 
||
30  | 
(* definitions for the natural numbers *)  | 
|
31  | 
||
32  | 
instantiation nat :: binomial  | 
|
33  | 
||
34  | 
begin  | 
|
35  | 
||
36  | 
fun  | 
|
37  | 
binomial_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"  | 
|
38  | 
where  | 
|
39  | 
"binomial_nat n k =  | 
|
40  | 
(if k = 0 then 1 else  | 
|
41  | 
if n = 0 then 0 else  | 
|
42  | 
(binomial (n - 1) k) + (binomial (n - 1) (k - 1)))"  | 
|
43  | 
||
44  | 
instance proof qed  | 
|
45  | 
||
46  | 
end  | 
|
47  | 
||
48  | 
(* definitions for the integers *)  | 
|
49  | 
||
50  | 
instantiation int :: binomial  | 
|
51  | 
||
52  | 
begin  | 
|
53  | 
||
54  | 
definition  | 
|
55  | 
binomial_int :: "int => int \<Rightarrow> int"  | 
|
56  | 
where  | 
|
57  | 
"binomial_int n k = (if n \<ge> 0 \<and> k \<ge> 0 then int (binomial (nat n) (nat k))  | 
|
58  | 
else 0)"  | 
|
59  | 
instance proof qed  | 
|
60  | 
||
61  | 
end  | 
|
62  | 
||
63  | 
||
64  | 
subsection {* Set up Transfer *}
 | 
|
65  | 
||
66  | 
lemma transfer_nat_int_binomial:  | 
|
67  | 
"(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow> binomial (nat n) (nat k) =  | 
|
68  | 
nat (binomial n k)"  | 
|
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
69  | 
unfolding binomial_int_def  | 
| 31719 | 70  | 
by auto  | 
71  | 
||
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
72  | 
lemma transfer_nat_int_binomial_closure:  | 
| 31719 | 73  | 
"n >= (0::int) \<Longrightarrow> k >= 0 \<Longrightarrow> binomial n k >= 0"  | 
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
74  | 
by (auto simp add: binomial_int_def)  | 
| 31719 | 75  | 
|
| 35644 | 76  | 
declare transfer_morphism_nat_int[transfer add return:  | 
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
77  | 
transfer_nat_int_binomial transfer_nat_int_binomial_closure]  | 
| 31719 | 78  | 
|
79  | 
lemma transfer_int_nat_binomial:  | 
|
80  | 
"binomial (int n) (int k) = int (binomial n k)"  | 
|
81  | 
unfolding fact_int_def binomial_int_def by auto  | 
|
82  | 
||
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
83  | 
lemma transfer_int_nat_binomial_closure:  | 
| 31719 | 84  | 
"is_nat n \<Longrightarrow> is_nat k \<Longrightarrow> binomial n k >= 0"  | 
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
85  | 
by (auto simp add: binomial_int_def)  | 
| 31719 | 86  | 
|
| 35644 | 87  | 
declare transfer_morphism_int_nat[transfer add return:  | 
| 
32036
 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 
avigad 
parents: 
31952 
diff
changeset
 | 
88  | 
transfer_int_nat_binomial transfer_int_nat_binomial_closure]  | 
| 31719 | 89  | 
|
90  | 
||
91  | 
subsection {* Binomial coefficients *}
 | 
|
92  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
93  | 
lemma choose_zero_nat [simp]: "(n::nat) choose 0 = 1"  | 
| 31719 | 94  | 
by simp  | 
95  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
96  | 
lemma choose_zero_int [simp]: "n \<ge> 0 \<Longrightarrow> (n::int) choose 0 = 1"  | 
| 31719 | 97  | 
by (simp add: binomial_int_def)  | 
98  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
99  | 
lemma zero_choose_nat [rule_format,simp]: "ALL (k::nat) > n. n choose k = 0"  | 
| 
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
100  | 
by (induct n rule: induct'_nat, auto)  | 
| 31719 | 101  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
102  | 
lemma zero_choose_int [rule_format,simp]: "(k::int) > n \<Longrightarrow> n choose k = 0"  | 
| 31719 | 103  | 
unfolding binomial_int_def apply (case_tac "n < 0")  | 
104  | 
apply force  | 
|
105  | 
apply (simp del: binomial_nat.simps)  | 
|
106  | 
done  | 
|
107  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
108  | 
lemma choose_reduce_nat: "(n::nat) > 0 \<Longrightarrow> 0 < k \<Longrightarrow>  | 
| 31719 | 109  | 
(n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"  | 
110  | 
by simp  | 
|
111  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
112  | 
lemma choose_reduce_int: "(n::int) > 0 \<Longrightarrow> 0 < k \<Longrightarrow>  | 
| 31719 | 113  | 
(n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
114  | 
unfolding binomial_int_def apply (subst choose_reduce_nat)  | 
| 31719 | 115  | 
apply (auto simp del: binomial_nat.simps  | 
116  | 
simp add: nat_diff_distrib)  | 
|
117  | 
done  | 
|
118  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
119  | 
lemma choose_plus_one_nat: "((n::nat) + 1) choose (k + 1) =  | 
| 31719 | 120  | 
(n choose (k + 1)) + (n choose k)"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
121  | 
by (simp add: choose_reduce_nat)  | 
| 31719 | 122  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
123  | 
lemma choose_Suc_nat: "(Suc n) choose (Suc k) =  | 
| 31719 | 124  | 
(n choose (Suc k)) + (n choose k)"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
125  | 
by (simp add: choose_reduce_nat One_nat_def)  | 
| 31719 | 126  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
127  | 
lemma choose_plus_one_int: "n \<ge> 0 \<Longrightarrow> k \<ge> 0 \<Longrightarrow> ((n::int) + 1) choose (k + 1) =  | 
| 31719 | 128  | 
(n choose (k + 1)) + (n choose k)"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
129  | 
by (simp add: binomial_int_def choose_plus_one_nat nat_add_distrib del: binomial_nat.simps)  | 
| 31719 | 130  | 
|
131  | 
declare binomial_nat.simps [simp del]  | 
|
132  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
133  | 
lemma choose_self_nat [simp]: "((n::nat) choose n) = 1"  | 
| 
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
134  | 
by (induct n rule: induct'_nat, auto simp add: choose_plus_one_nat)  | 
| 31719 | 135  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
136  | 
lemma choose_self_int [simp]: "n \<ge> 0 \<Longrightarrow> ((n::int) choose n) = 1"  | 
| 31719 | 137  | 
by (auto simp add: binomial_int_def)  | 
138  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
139  | 
lemma choose_one_nat [simp]: "(n::nat) choose 1 = n"  | 
| 
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
140  | 
by (induct n rule: induct'_nat, auto simp add: choose_reduce_nat)  | 
| 31719 | 141  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
142  | 
lemma choose_one_int [simp]: "n \<ge> 0 \<Longrightarrow> (n::int) choose 1 = n"  | 
| 31719 | 143  | 
by (auto simp add: binomial_int_def)  | 
144  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
145  | 
lemma plus_one_choose_self_nat [simp]: "(n::nat) + 1 choose n = n + 1"  | 
| 
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
146  | 
apply (induct n rule: induct'_nat, force)  | 
| 31719 | 147  | 
apply (case_tac "n = 0")  | 
148  | 
apply auto  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
149  | 
apply (subst choose_reduce_nat)  | 
| 31719 | 150  | 
apply (auto simp add: One_nat_def)  | 
151  | 
(* natdiff_cancel_numerals introduces Suc *)  | 
|
152  | 
done  | 
|
153  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
154  | 
lemma Suc_choose_self_nat [simp]: "(Suc n) choose n = Suc n"  | 
| 
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
155  | 
using plus_one_choose_self_nat by (simp add: One_nat_def)  | 
| 31719 | 156  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
157  | 
lemma plus_one_choose_self_int [rule_format, simp]:  | 
| 31719 | 158  | 
"(n::int) \<ge> 0 \<longrightarrow> n + 1 choose n = n + 1"  | 
159  | 
by (auto simp add: binomial_int_def nat_add_distrib)  | 
|
160  | 
||
161  | 
(* bounded quantification doesn't work with the unicode characters? *)  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
162  | 
lemma choose_pos_nat [rule_format]: "ALL k <= (n::nat).  | 
| 31719 | 163  | 
((n::nat) choose k) > 0"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
164  | 
apply (induct n rule: induct'_nat)  | 
| 31719 | 165  | 
apply force  | 
166  | 
apply clarify  | 
|
167  | 
apply (case_tac "k = 0")  | 
|
168  | 
apply force  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
169  | 
apply (subst choose_reduce_nat)  | 
| 31719 | 170  | 
apply auto  | 
171  | 
done  | 
|
172  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
173  | 
lemma choose_pos_int: "n \<ge> 0 \<Longrightarrow> k >= 0 \<Longrightarrow> k \<le> n \<Longrightarrow>  | 
| 31719 | 174  | 
((n::int) choose k) > 0"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
175  | 
by (auto simp add: binomial_int_def choose_pos_nat)  | 
| 31719 | 176  | 
|
177  | 
lemma binomial_induct [rule_format]: "(ALL (n::nat). P n n) \<longrightarrow>  | 
|
178  | 
(ALL n. P (n + 1) 0) \<longrightarrow> (ALL n. (ALL k < n. P n k \<longrightarrow> P n (k + 1) \<longrightarrow>  | 
|
179  | 
P (n + 1) (k + 1))) \<longrightarrow> (ALL k <= n. P n k)"  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
180  | 
apply (induct n rule: induct'_nat)  | 
| 31719 | 181  | 
apply auto  | 
182  | 
apply (case_tac "k = 0")  | 
|
183  | 
apply auto  | 
|
184  | 
apply (case_tac "k = n + 1")  | 
|
185  | 
apply auto  | 
|
186  | 
apply (drule_tac x = n in spec) back back  | 
|
187  | 
apply (drule_tac x = "k - 1" in spec) back back back  | 
|
188  | 
apply auto  | 
|
189  | 
done  | 
|
190  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
191  | 
lemma choose_altdef_aux_nat: "(k::nat) \<le> n \<Longrightarrow>  | 
| 31719 | 192  | 
fact k * fact (n - k) * (n choose k) = fact n"  | 
193  | 
apply (rule binomial_induct [of _ k n])  | 
|
194  | 
apply auto  | 
|
195  | 
proof -  | 
|
196  | 
fix k :: nat and n  | 
|
197  | 
assume less: "k < n"  | 
|
198  | 
assume ih1: "fact k * fact (n - k) * (n choose k) = fact n"  | 
|
199  | 
hence one: "fact (k + 1) * fact (n - k) * (n choose k) = (k + 1) * fact n"  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
200  | 
by (subst fact_plus_one_nat, auto)  | 
| 31719 | 201  | 
assume ih2: "fact (k + 1) * fact (n - (k + 1)) * (n choose (k + 1)) =  | 
202  | 
fact n"  | 
|
203  | 
with less have "fact (k + 1) * fact ((n - (k + 1)) + 1) *  | 
|
204  | 
(n choose (k + 1)) = (n - k) * fact n"  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
205  | 
by (subst (2) fact_plus_one_nat, auto)  | 
| 31719 | 206  | 
with less have two: "fact (k + 1) * fact (n - k) * (n choose (k + 1)) =  | 
207  | 
(n - k) * fact n" by simp  | 
|
208  | 
have "fact (k + 1) * fact (n - k) * (n + 1 choose (k + 1)) =  | 
|
209  | 
fact (k + 1) * fact (n - k) * (n choose (k + 1)) +  | 
|
210  | 
fact (k + 1) * fact (n - k) * (n choose k)"  | 
|
| 36350 | 211  | 
by (subst choose_reduce_nat, auto simp add: field_simps)  | 
| 31719 | 212  | 
also note one  | 
213  | 
also note two  | 
|
214  | 
also with less have "(n - k) * fact n + (k + 1) * fact n= fact (n + 1)"  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
215  | 
apply (subst fact_plus_one_nat)  | 
| 31719 | 216  | 
apply (subst left_distrib [symmetric])  | 
217  | 
apply simp  | 
|
218  | 
done  | 
|
219  | 
finally show "fact (k + 1) * fact (n - k) * (n + 1 choose (k + 1)) =  | 
|
220  | 
fact (n + 1)" .  | 
|
221  | 
qed  | 
|
222  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
223  | 
lemma choose_altdef_nat: "(k::nat) \<le> n \<Longrightarrow>  | 
| 31719 | 224  | 
n choose k = fact n div (fact k * fact (n - k))"  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
225  | 
apply (frule choose_altdef_aux_nat)  | 
| 31719 | 226  | 
apply (erule subst)  | 
227  | 
apply (simp add: mult_ac)  | 
|
228  | 
done  | 
|
229  | 
||
230  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
231  | 
lemma choose_altdef_int:  | 
| 31719 | 232  | 
assumes "(0::int) <= k" and "k <= n"  | 
233  | 
shows "n choose k = fact n div (fact k * fact (n - k))"  | 
|
234  | 
||
235  | 
apply (subst tsub_eq [symmetric], rule prems)  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
236  | 
apply (rule choose_altdef_nat [transferred])  | 
| 31719 | 237  | 
using prems apply auto  | 
238  | 
done  | 
|
239  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
240  | 
lemma choose_dvd_nat: "(k::nat) \<le> n \<Longrightarrow> fact k * fact (n - k) dvd fact n"  | 
| 
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
241  | 
unfolding dvd_def apply (frule choose_altdef_aux_nat)  | 
| 31719 | 242  | 
(* why don't blast and auto get this??? *)  | 
243  | 
apply (rule exI)  | 
|
244  | 
apply (erule sym)  | 
|
245  | 
done  | 
|
246  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
247  | 
lemma choose_dvd_int:  | 
| 31719 | 248  | 
assumes "(0::int) <= k" and "k <= n"  | 
249  | 
shows "fact k * fact (n - k) dvd fact n"  | 
|
250  | 
||
251  | 
apply (subst tsub_eq [symmetric], rule prems)  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
252  | 
apply (rule choose_dvd_nat [transferred])  | 
| 31719 | 253  | 
using prems apply auto  | 
254  | 
done  | 
|
255  | 
||
256  | 
(* generalizes Tobias Nipkow's proof to any commutative semiring *)  | 
|
257  | 
theorem binomial: "(a+b::'a::{comm_ring_1,power})^n = 
 | 
|
258  | 
(SUM k=0..n. (of_nat (n choose k)) * a^k * b^(n-k))" (is "?P n")  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
259  | 
proof (induct n rule: induct'_nat)  | 
| 31719 | 260  | 
show "?P 0" by simp  | 
261  | 
next  | 
|
262  | 
fix n  | 
|
263  | 
assume ih: "?P n"  | 
|
264  | 
  have decomp: "{0..n+1} = {0} Un {n+1} Un {1..n}"
 | 
|
265  | 
by auto  | 
|
266  | 
  have decomp2: "{0..n} = {0} Un {1..n}"
 | 
|
267  | 
by auto  | 
|
268  | 
  have decomp3: "{1..n+1} = {n+1} Un {1..n}"
 | 
|
269  | 
by auto  | 
|
270  | 
have "(a+b)^(n+1) =  | 
|
271  | 
(a+b) * (SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k))"  | 
|
272  | 
using ih by (simp add: power_plus_one)  | 
|
273  | 
also have "... = a*(SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k)) +  | 
|
274  | 
b*(SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k))"  | 
|
275  | 
by (rule distrib)  | 
|
276  | 
also have "... = (SUM k=0..n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +  | 
|
277  | 
(SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k+1))"  | 
|
278  | 
by (subst (1 2) power_plus_one, simp add: setsum_right_distrib mult_ac)  | 
|
279  | 
also have "... = (SUM k=0..n. of_nat (n choose k) * a^k * b^(n+1-k)) +  | 
|
280  | 
(SUM k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n+1-k))"  | 
|
281  | 
by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le  | 
|
| 36350 | 282  | 
power_Suc field_simps One_nat_def del:setsum_cl_ivl_Suc)  | 
| 31719 | 283  | 
also have "... = a^(n+1) + b^(n+1) +  | 
284  | 
(SUM k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n+1-k)) +  | 
|
285  | 
(SUM k=1..n. of_nat (n choose k) * a^k * b^(n+1-k))"  | 
|
286  | 
by (simp add: decomp2 decomp3)  | 
|
287  | 
also have  | 
|
288  | 
"... = a^(n+1) + b^(n+1) +  | 
|
289  | 
(SUM k=1..n. of_nat(n+1 choose k) * a^k * b^(n+1-k))"  | 
|
| 36350 | 290  | 
by (auto simp add: field_simps setsum_addf [symmetric]  | 
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
291  | 
choose_reduce_nat)  | 
| 31719 | 292  | 
also have "... = (SUM k=0..n+1. of_nat (n+1 choose k) * a^k * b^(n+1-k))"  | 
| 36350 | 293  | 
using decomp by (simp add: field_simps)  | 
| 31719 | 294  | 
finally show "?P (n + 1)" by simp  | 
295  | 
qed  | 
|
296  | 
||
297  | 
lemma set_explicit: "{S. S = T \<and> P S} = (if P T then {T} else {})"
 | 
|
298  | 
by auto  | 
|
299  | 
||
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
300  | 
lemma card_subsets_nat [rule_format]:  | 
| 31719 | 301  | 
fixes S :: "'a set"  | 
302  | 
assumes "finite S"  | 
|
303  | 
  shows "ALL k. card {T. T \<le> S \<and> card T = k} = card S choose k" 
 | 
|
304  | 
(is "?P S")  | 
|
305  | 
using `finite S`  | 
|
306  | 
proof (induct set: finite)  | 
|
307  | 
  show "?P {}" by (auto simp add: set_explicit)
 | 
|
308  | 
next fix x :: "'a" and F  | 
|
309  | 
assume iassms: "finite F" "x ~: F"  | 
|
310  | 
assume ih: "?P F"  | 
|
311  | 
show "?P (insert x F)" (is "ALL k. ?Q k")  | 
|
312  | 
proof  | 
|
313  | 
fix k  | 
|
314  | 
    show "card {T. T \<subseteq> (insert x F) \<and> card T = k} = 
 | 
|
315  | 
card (insert x F) choose k" (is "?Q k")  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
316  | 
proof (induct k rule: induct'_nat)  | 
| 31719 | 317  | 
      from iassms have "{T. T \<le> (insert x F) \<and> card T = 0} = {{}}"
 | 
318  | 
apply auto  | 
|
319  | 
apply (subst (asm) card_0_eq)  | 
|
320  | 
apply (auto elim: finite_subset)  | 
|
321  | 
done  | 
|
322  | 
thus "?Q 0"  | 
|
323  | 
by auto  | 
|
324  | 
next fix k  | 
|
325  | 
show "?Q (k + 1)"  | 
|
326  | 
proof -  | 
|
327  | 
from iassms have fin: "finite (insert x F)" by auto  | 
|
328  | 
        hence "{ T. T \<subseteq> insert x F \<and> card T = k + 1} =
 | 
|
329  | 
          {T. T \<le> F & card T = k + 1} Un 
 | 
|
330  | 
          {T. T \<le> insert x F & x : T & card T = k + 1}"
 | 
|
331  | 
by (auto intro!: subsetI)  | 
|
332  | 
        with iassms fin have "card ({T. T \<le> insert x F \<and> card T = k + 1}) = 
 | 
|
333  | 
          card ({T. T \<subseteq> F \<and> card T = k + 1}) + 
 | 
|
334  | 
          card ({T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1})"
 | 
|
335  | 
apply (subst card_Un_disjoint [symmetric])  | 
|
336  | 
apply auto  | 
|
337  | 
(* note: nice! Didn't have to say anything here *)  | 
|
338  | 
done  | 
|
339  | 
        also from ih have "card ({T. T \<subseteq> F \<and> card T = k + 1}) = 
 | 
|
340  | 
card F choose (k+1)" by auto  | 
|
341  | 
        also have "card ({T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1}) =
 | 
|
342  | 
          card ({T. T <= F & card T = k})"
 | 
|
343  | 
proof -  | 
|
344  | 
          let ?f = "%T. T Un {x}"
 | 
|
345  | 
          from iassms have "inj_on ?f {T. T <= F & card T = k}"
 | 
|
346  | 
unfolding inj_on_def by (auto intro!: subsetI)  | 
|
347  | 
          hence "card ({T. T <= F & card T = k}) = 
 | 
|
348  | 
            card(?f ` {T. T <= F & card T = k})"
 | 
|
349  | 
by (rule card_image [symmetric])  | 
|
350  | 
          also from iassms fin have "?f ` {T. T <= F & card T = k} = 
 | 
|
351  | 
            {T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1}"
 | 
|
352  | 
unfolding image_def  | 
|
353  | 
(* I can't figure out why this next line takes so long *)  | 
|
354  | 
apply auto  | 
|
355  | 
apply (frule (1) finite_subset, force)  | 
|
356  | 
            apply (rule_tac x = "xa - {x}" in exI)
 | 
|
357  | 
apply (subst card_Diff_singleton)  | 
|
358  | 
apply (auto elim: finite_subset)  | 
|
359  | 
done  | 
|
360  | 
finally show ?thesis by (rule sym)  | 
|
361  | 
qed  | 
|
362  | 
        also from ih have "card ({T. T <= F & card T = k}) = card F choose k"
 | 
|
363  | 
by auto  | 
|
364  | 
        finally have "card ({T. T \<le> insert x F \<and> card T = k + 1}) = 
 | 
|
365  | 
card F choose (k + 1) + (card F choose k)".  | 
|
| 
31952
 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 
nipkow 
parents: 
31719 
diff
changeset
 | 
366  | 
with iassms choose_plus_one_nat show ?thesis  | 
| 35731 | 367  | 
by (auto simp del: card.insert)  | 
| 31719 | 368  | 
qed  | 
369  | 
qed  | 
|
370  | 
qed  | 
|
371  | 
qed  | 
|
372  | 
||
373  | 
end  |