doc-src/TutorialI/Inductive/Star.thy
author nipkow
Wed, 18 Oct 2000 17:19:18 +0200
changeset 10242 028f54cd2cc9
parent 10237 875bf54b5d74
child 10243 f11d37d4472d
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)theory Star = Main:(*>*)
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     2
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
     3
section{*The reflexive transitive closure*}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
     4
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     5
text{*\label{sec:rtc}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     6
{\bf Say something about inductive relations as opposed to sets? Or has that
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     7
been said already? If not, explain induction!}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     8
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
     9
A perfect example of an inductive definition is the reflexive transitive
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    10
closure of a relation. This concept was already introduced in
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    11
\S\ref{sec:rtrancl}, but it was not shown how it is defined. In fact,
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    12
the operator @{text"^*"} is not defined inductively but via a least
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    13
fixed point because at that point in the theory hierarchy
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    14
inductive definitions are not yet available. But now they are:
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    15
*}
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    16
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    17
consts rtc :: "('a \<times> 'a)set \<Rightarrow> ('a \<times> 'a)set"   ("_*" [1000] 999)
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    18
inductive "r*"
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    19
intros
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    20
rtc_refl[iff]:  "(x,x) \<in> r*"
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    21
rtc_step:       "\<lbrakk> (x,y) \<in> r; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    22
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    23
text{*\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    24
The function @{term rtc} is annotated with concrete syntax: instead of
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    25
@{text"rtc r"} we can read and write {term"r*"}. The actual definition
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    26
consists of two rules. Reflexivity is obvious and is immediately declared an
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    27
equivalence rule.  Thus the automatic tools will apply it automatically. The
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    28
second rule, @{thm[source]rtc_step}, says that we can always add one more
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    29
@{term r}-step to the left. Although we could make @{thm[source]rtc_step} an
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    30
introduction rule, this is dangerous: the recursion slows down and may
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    31
even kill the automatic tactics.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    32
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    33
The above definition of the concept of reflexive transitive closure may
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    34
be sufficiently intuitive but it is certainly not the only possible one:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    35
for a start, it does not even mention transitivity explicitly.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    36
The rest of this section is devoted to proving that it is equivalent to
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    37
the ``standard'' definition. We start with a simple lemma:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    38
*}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    39
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    40
lemma [intro]: "(x,y) : r \<Longrightarrow> (x,y) \<in> r*"
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
    41
by(blast intro: rtc_step);
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
    42
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    43
text{*\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    44
Although the lemma itself is an unremarkable consequence of the basic rules,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    45
it has the advantage that it can be declared an introduction rule without the
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    46
danger of killing the automatic tactics because @{term"r*"} occurs only in
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    47
the conclusion and not in the premise. Thus some proofs that would otherwise
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    48
need @{thm[source]rtc_step} can now be found automatically. The proof also
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    49
shows that @{term blast} is quite able to handle @{thm[source]rtc_step}. But
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    50
some of the other automatic tactics are more sensitive, and even @{text
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    51
blast} can be lead astray in the presence of large numbers of rules.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    52
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    53
Let us now turn to transitivity. It should be a consequence of the definition.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    54
*}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    55
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    56
lemma rtc_trans:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    57
  "\<lbrakk> (x,y) \<in> r*; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    58
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    59
txt{*\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    60
The proof starts canonically by rule induction:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    61
*}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    62
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    63
apply(erule rtc.induct)(*pr(latex xsymbols symbols);*)(*<*)oops(*>*)
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    64
text{*\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    65
However, even the resulting base case is a problem
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    66
\begin{isabelle}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    67
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymLongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    68
\end{isabelle}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    69
and maybe not what you had expected. We have to abandon this proof attempt.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    70
To understand what is going on,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    71
let us look at the induction rule @{thm[source]rtc.induct}:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    72
\[ \frac{(x,y) \in r^* \qquad \bigwedge x.~P~x~x \quad \dots}{P~x~y} \]
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    73
When applying this rule, $x$ becomes @{term x}, $y$ becomes
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    74
@{term y} and $P~x~y$ becomes @{prop"(x,z) : r*"}, thus
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    75
yielding the above subgoal. So what went wrong?
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    76
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    77
When looking at the instantiation of $P~x~y$ we see
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    78
that $P$ does not depend on its second parameter at
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    79
all. The reason is that in our original goal, of the pair @{term"(x,y)"} only
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    80
@{term x} appears also in the conclusion, but not @{term y}. Thus our
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    81
induction statement is too weak. Fortunately, it can easily be strengthened:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    82
transfer the additional premise @{prop"(y,z):r*"} into the conclusion:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    83
*}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    84
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    85
lemma rtc_trans[rule_format]:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    86
  "(x,y) \<in> r* \<Longrightarrow> (y,z) \<in> r* \<longrightarrow> (x,z) \<in> r*"
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    87
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    88
txt{*\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    89
This is not an obscure trick but a generally applicable heuristic:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    90
\begin{quote}\em
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    91
Whe proving a statement by rule induction on $(x@1,\dots,x@n) \in R$,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    92
pull all other premises containing any of the $x@i$ into the conclusion
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    93
using $\longrightarrow$.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    94
\end{quote}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    95
A similar heuristic for other kinds of inductions is formulated in
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    96
\S\ref{sec:ind-var-in-prems}. The @{text rule_format} directive turns
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    97
@{text"\<longrightarrow>"} back into @{text"\<Longrightarrow>"}. Thus in the end we obtain the original
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    98
statement of our lemma.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    99
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   100
Now induction produces two subgoals which are both proved automatically:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   101
\begin{isabelle}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   102
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\isanewline
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   103
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}x\ y\ za{\isachardot}\isanewline
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   104
\ \ \ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}y{\isacharcomma}\ za{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isacharsemicolon}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}{\isasymrbrakk}\isanewline
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   105
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isacharparenleft}za{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}\ {\isasymlongrightarrow}\ {\isacharparenleft}x{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharasterisk}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   106
\end{isabelle}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   107
*}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   108
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   109
apply(erule rtc.induct)(*pr(latex xsymbols symbols);*)
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   110
 apply(blast);
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   111
apply(blast intro: rtc_step);
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   112
done
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   113
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   114
text{*
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   115
Let us now prove that @{term"r*"} is really the reflexive transitive closure
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   116
of @{term r}, i.e.\ the least reflexive and transitive
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   117
relation containing @{term r}. The latter is easily formalized
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   118
*}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   119
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   120
consts rtc2 :: "('a \<times> 'a)set \<Rightarrow> ('a \<times> 'a)set"
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   121
inductive "rtc2 r"
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   122
intros
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   123
"(x,y) \<in> r \<Longrightarrow> (x,y) \<in> rtc2 r"
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   124
"(x,x) \<in> rtc2 r"
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   125
"\<lbrakk> (x,y) \<in> rtc2 r; (y,z) \<in> rtc2 r \<rbrakk> \<Longrightarrow> (x,z) \<in> rtc2 r"
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   126
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   127
text{*\noindent
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   128
and the equivalence of the two definitions is easily shown by the obvious rule
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   129
inductions:
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   130
*}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   131
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   132
lemma "(x,y) \<in> rtc2 r \<Longrightarrow> (x,y) \<in> r*"
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   133
apply(erule rtc2.induct);
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   134
  apply(blast);
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   135
 apply(blast);
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   136
apply(blast intro: rtc_trans);
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   137
done
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   138
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   139
lemma "(x,y) \<in> r* \<Longrightarrow> (x,y) \<in> rtc2 r"
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   140
apply(erule rtc.induct);
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   141
 apply(blast intro: rtc2.intros);
875bf54b5d74 *** empty log message ***
nipkow
parents: 10225
diff changeset
   142
apply(blast intro: rtc2.intros);
10225
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   143
done
b9fd52525b69 *** empty log message ***
nipkow
parents:
diff changeset
   144
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   145
text{*
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   146
So why did we start with the first definition? Because it is simpler. It
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   147
contains only two rules, and the single step rule is simpler than
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   148
transitivity.  As a consequence, @{thm[source]rtc.induct} is simpler than
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   149
@{thm[source]rtc2.induct}. Since inductive proofs are hard enough, we should
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   150
certainly pick the simplest induction schema available for any concept.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   151
Hence @{term rtc} is the definition of choice.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   152
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   153
\begin{exercise}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   154
Show that the converse of @{thm[source]rtc_step} also holds:
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   155
@{prop[display]"[| (x,y) : r*; (y,z) : r |] ==> (x,z) : r*"}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   156
\end{exercise}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   157
*}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   158
(*<*)
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   159
lemma rtc_step2[rule_format]: "(x,y) : r* \<Longrightarrow> (y,z) : r --> (x,z) : r*"
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   160
apply(erule rtc.induct);
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   161
 apply blast;
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   162
apply(blast intro:rtc_step)
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   163
done
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   164
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   165
end
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
   166
(*>*)