| author | berghofe | 
| Mon, 24 Jan 2005 18:18:28 +0100 | |
| changeset 15464 | 02cc838b64ca | 
| parent 14353 | 79f9fbef9106 | 
| child 17278 | f27456a2a975 | 
| permissions | -rw-r--r-- | 
| 1465 | 1 | (* Title: HOL/Hoare/Arith2.ML | 
| 1335 | 2 | ID: $Id$ | 
| 1465 | 3 | Author: Norbert Galm | 
| 1335 | 4 | Copyright 1995 TUM | 
| 5 | ||
| 6 | More arithmetic lemmas. | |
| 7 | *) | |
| 8 | ||
| 9 | open Arith2; | |
| 10 | ||
| 11 | ||
| 12 | (*** cd ***) | |
| 13 | ||
| 14 | ||
| 7127 
48e235179ffb
added parentheses to cope with a possible reduction of the precedence of unary
 paulson parents: 
5118diff
changeset | 15 | Goalw [cd_def] "0<n ==> cd n n n"; | 
| 1335 | 16 | by (Asm_simp_tac 1); | 
| 17 | qed "cd_nnn"; | |
| 18 | ||
| 7127 
48e235179ffb
added parentheses to cope with a possible reduction of the precedence of unary
 paulson parents: 
5118diff
changeset | 19 | Goalw [cd_def] "[| cd x m n; 0<m; 0<n |] ==> x<=m & x<=n"; | 
| 4089 | 20 | by (blast_tac (claset() addIs [dvd_imp_le]) 1); | 
| 1335 | 21 | qed "cd_le"; | 
| 22 | ||
| 7127 
48e235179ffb
added parentheses to cope with a possible reduction of the precedence of unary
 paulson parents: 
5118diff
changeset | 23 | Goalw [cd_def] "cd x m n = cd x n m"; | 
| 1875 | 24 | by (Fast_tac 1); | 
| 1335 | 25 | qed "cd_swap"; | 
| 26 | ||
| 7127 
48e235179ffb
added parentheses to cope with a possible reduction of the precedence of unary
 paulson parents: 
5118diff
changeset | 27 | Goalw [cd_def] "n<=m ==> cd x m n = cd x (m-n) n"; | 
| 4089 | 28 | by (blast_tac (claset() addIs [dvd_diff] addDs [dvd_diffD]) 1); | 
| 1335 | 29 | qed "cd_diff_l"; | 
| 30 | ||
| 7127 
48e235179ffb
added parentheses to cope with a possible reduction of the precedence of unary
 paulson parents: 
5118diff
changeset | 31 | Goalw [cd_def] "m<=n ==> cd x m n = cd x m (n-m)"; | 
| 4089 | 32 | by (blast_tac (claset() addIs [dvd_diff] addDs [dvd_diffD]) 1); | 
| 1335 | 33 | qed "cd_diff_r"; | 
| 34 | ||
| 35 | ||
| 36 | (*** gcd ***) | |
| 37 | ||
| 5118 | 38 | Goalw [gcd_def] "0<n ==> n = gcd n n"; | 
| 7499 | 39 | by (ftac cd_nnn 1); | 
| 9969 | 40 | by (rtac (some_equality RS sym) 1); | 
| 4089 | 41 | by (blast_tac (claset() addDs [cd_le]) 1); | 
| 42 | by (blast_tac (claset() addIs [le_anti_sym] addDs [cd_le]) 1); | |
| 1335 | 43 | qed "gcd_nnn"; | 
| 44 | ||
| 45 | val prems = goalw thy [gcd_def] "gcd m n = gcd n m"; | |
| 4089 | 46 | by (simp_tac (simpset() addsimps [cd_swap]) 1); | 
| 1335 | 47 | qed "gcd_swap"; | 
| 48 | ||
| 7127 
48e235179ffb
added parentheses to cope with a possible reduction of the precedence of unary
 paulson parents: 
5118diff
changeset | 49 | Goalw [gcd_def] "n<=m ==> gcd m n = gcd (m-n) n"; | 
| 3842 | 50 | by (subgoal_tac "n<=m ==> !x. cd x m n = cd x (m-n) n" 1); | 
| 1335 | 51 | by (Asm_simp_tac 1); | 
| 2031 | 52 | by (rtac allI 1); | 
| 53 | by (etac cd_diff_l 1); | |
| 1335 | 54 | qed "gcd_diff_l"; | 
| 55 | ||
| 7127 
48e235179ffb
added parentheses to cope with a possible reduction of the precedence of unary
 paulson parents: 
5118diff
changeset | 56 | Goalw [gcd_def] "m<=n ==> gcd m n = gcd m (n-m)"; | 
| 3842 | 57 | by (subgoal_tac "m<=n ==> !x. cd x m n = cd x m (n-m)" 1); | 
| 1335 | 58 | by (Asm_simp_tac 1); | 
| 2031 | 59 | by (rtac allI 1); | 
| 60 | by (etac cd_diff_r 1); | |
| 1335 | 61 | qed "gcd_diff_r"; | 
| 62 | ||
| 63 | ||
| 64 | (*** pow ***) | |
| 65 | ||
| 11704 
3c50a2cd6f00
* sane numerals (stage 2): plain "num" syntax (removed "#");
 wenzelm parents: 
11701diff
changeset | 66 | Goal "m mod 2 = 0 ==> ((n::nat)*n)^(m div 2) = n^m"; | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
11704diff
changeset | 67 | by (asm_simp_tac (simpset() addsimps [power2_eq_square RS sym, | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
11704diff
changeset | 68 | power_mult RS sym, mult_div_cancel]) 1); | 
| 4359 | 69 | qed "sq_pow_div2"; | 
| 70 | Addsimps [sq_pow_div2]; |