| 
104
 | 
     1  | 
\idx{refl_type}         A type ==> A = A), 
 | 
| 
 | 
     2  | 
\idx{refl_elem}         a : A ==> a = a : A
 | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
\idx{sym_type}          A = B ==> B = A
 | 
| 
 | 
     5  | 
\idx{sym_elem}          a = b : A ==> b = a : A
 | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
\idx{trans_type}        [| A = B;  B = C |] ==> A = C
 | 
| 
 | 
     8  | 
\idx{trans_elem}        [| a = b : A;  b = c : A |] ==> a = c : A
 | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
\idx{equal_types}       [| a : A;  A = B |] ==> a : B
 | 
| 
 | 
    11  | 
\idx{equal_typesL}      [| a = b : A;  A = B |] ==> a = b : B
 | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
\idx{subst_type}        [| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type
 | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
\idx{subst_typeL}       [| a = c : A;  !!z. z:A ==> B(z) = D(z) 
 | 
| 
 | 
    16  | 
                  |] ==> B(a) = D(c)
  | 
| 
 | 
    17  | 
\idx{subst_elem}        [| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)
 | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
\idx{subst_elemL}       [| a = c : A;  !!z. z:A ==> b(z) = d(z) : B(z) 
 | 
| 
 | 
    20  | 
                  |] ==> b(a) = d(c) : B(a)
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
\idx{refl_red}          Reduce(a,a)
 | 
| 
 | 
    23  | 
\idx{red_if_equal}      a = b : A ==> Reduce(a,b)
 | 
| 
 | 
    24  | 
\idx{trans_red}         [| a = b : A;  Reduce(b,c) |] ==> a = c : A
 | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
\idx{NF}        N type
 | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
\idx{NI0}       0 : N
 | 
| 
 | 
    30  | 
\idx{NI_succ}   a : N ==> succ(a) : N
 | 
| 
 | 
    31  | 
\idx{NI_succL}  a = b : N ==> succ(a) = succ(b) : N
 | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
\idx{NE}        [| p: N;  a: C(0);  
 | 
| 
 | 
    34  | 
             !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) 
  | 
| 
 | 
    35  | 
          |] ==> rec(p, a, %u v.b(u,v)) : C(p)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
\idx{NEL}       [| p = q : N;  a = c : C(0);  
 | 
| 
 | 
    38  | 
             !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u))
  | 
| 
 | 
    39  | 
          |] ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
\idx{NC0}       [| a: C(0);  
 | 
| 
 | 
    42  | 
             !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))
  | 
| 
 | 
    43  | 
          |] ==> rec(0, a, %u v.b(u,v)) = a : C(0)
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
\idx{NC_succ}   [| p: N;  a: C(0);  
 | 
| 
 | 
    46  | 
             !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) 
  | 
| 
 | 
    47  | 
          |] ==> rec(succ(p), a, %u v.b(u,v)) =
  | 
| 
 | 
    48  | 
                    b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
\idx{zero_ne_succ}      [| a: N;  0 = succ(a) : N |] ==> 0: F
 | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
\idx{ProdF}     [| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type
 | 
| 
 | 
    54  | 
\idx{ProdFL}    [| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> 
 | 
| 
 | 
    55  | 
          PROD x:A.B(x) = PROD x:C.D(x)
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
\idx{ProdI}     [| A type;  !!x. x:A ==> b(x):B(x)
 | 
| 
 | 
    58  | 
          |] ==> lam x.b(x) : PROD x:A.B(x)
  | 
| 
 | 
    59  | 
\idx{ProdIL}    [| A type;  !!x. x:A ==> b(x) = c(x) : B(x)
 | 
| 
 | 
    60  | 
          |] ==> lam x.b(x) = lam x.c(x) : PROD x:A.B(x)
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
\idx{ProdE}     [| p : PROD x:A.B(x);  a : A |] ==> p`a : B(a)
 | 
| 
 | 
    63  | 
\idx{ProdEL}    [| p=q: PROD x:A.B(x);  a=b : A |] ==> p`a = q`b : B(a)
 | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
\idx{ProdC}     [| a : A;  !!x. x:A ==> b(x) : B(x)
 | 
| 
 | 
    66  | 
          |] ==> (lam x.b(x)) ` a = b(a) : B(a)
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
\idx{ProdC2}    p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)
 | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
\idx{SumF}      [| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A.B(x) type
 | 
| 
 | 
    72  | 
\idx{SumFL}     [| A = C;  !!x. x:A ==> B(x) = D(x) 
 | 
| 
 | 
    73  | 
          |] ==> SUM x:A.B(x) = SUM x:C.D(x)
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
\idx{SumI}      [| a : A;  b : B(a) |] ==> <a,b> : SUM x:A.B(x)
 | 
| 
 | 
    76  | 
\idx{SumIL}     [| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A.B(x)
 | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
\idx{SumE}      [| p: SUM x:A.B(x);  
 | 
| 
 | 
    79  | 
             !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) 
  | 
| 
 | 
    80  | 
          |] ==> split(p, %x y.c(x,y)) : C(p)
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
\idx{SumEL}     [| p=q : SUM x:A.B(x); 
 | 
| 
 | 
    83  | 
             !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)
  | 
| 
 | 
    84  | 
          |] ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
\idx{SumC}      [| a: A;  b: B(a);
 | 
| 
 | 
    87  | 
             !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)
  | 
| 
 | 
    88  | 
          |] ==> split(<a,b>, %x y.c(x,y)) = c(a,b) : C(<a,b>)
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
\idx{fst_def}   fst(a) == split(a, %x y.x)
 | 
| 
 | 
    91  | 
\idx{snd_def}   snd(a) == split(a, %x y.y)
 | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
\idx{PlusF}     [| A type;  B type |] ==> A+B type
 | 
| 
 | 
    95  | 
\idx{PlusFL}    [| A = C;  B = D |] ==> A+B = C+D
 | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
\idx{PlusI_inl}   [| a : A;  B type |] ==> inl(a) : A+B
 | 
| 
 | 
    98  | 
\idx{PlusI_inlL}  [| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B
 | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
\idx{PlusI_inr}   [| A type;  b : B |] ==> inr(b) : A+B
 | 
| 
 | 
   101  | 
\idx{PlusI_inrL}  [| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B
 | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
\idx{PlusE}     [| p: A+B;
 | 
| 
 | 
   104  | 
             !!x. x:A ==> c(x): C(inl(x));  
  | 
| 
 | 
   105  | 
             !!y. y:B ==> d(y): C(inr(y))
  | 
| 
 | 
   106  | 
          |] ==> when(p, %x.c(x), %y.d(y)) : C(p)
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
\idx{PlusEL}    [| p = q : A+B;
 | 
| 
 | 
   109  | 
             !!x. x: A ==> c(x) = e(x) : C(inl(x));   
  | 
| 
 | 
   110  | 
             !!y. y: B ==> d(y) = f(y) : C(inr(y))
  | 
| 
 | 
   111  | 
          |] ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
\idx{PlusC_inl} [| a: A;
 | 
| 
 | 
   114  | 
             !!x. x:A ==> c(x): C(inl(x));  
  | 
| 
 | 
   115  | 
             !!y. y:B ==> d(y): C(inr(y))
  | 
| 
 | 
   116  | 
          |] ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
\idx{PlusC_inr} [| b: B;
 | 
| 
 | 
   119  | 
             !!x. x:A ==> c(x): C(inl(x));  
  | 
| 
 | 
   120  | 
             !!y. y:B ==> d(y): C(inr(y))
  | 
| 
 | 
   121  | 
          |] ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))
  | 
| 
 | 
   122  | 
  | 
| 
 | 
   123  | 
\idx{EqF}       [| A type;  a : A;  b : A |] ==> Eq(A,a,b) type
 | 
| 
 | 
   124  | 
\idx{EqFL}      [| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)
 | 
| 
 | 
   125  | 
\idx{EqI}       a = b : A ==> eq : Eq(A,a,b)
 | 
| 
 | 
   126  | 
\idx{EqE}       p : Eq(A,a,b) ==> a = b : A
 | 
| 
 | 
   127  | 
\idx{EqC}       p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)
 | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
\idx{FF}        F type
 | 
| 
 | 
   130  | 
\idx{FE}        [| p: F;  C type |] ==> contr(p) : C
 | 
| 
 | 
   131  | 
\idx{FEL}       [| p = q : F;  C type |] ==> contr(p) = contr(q) : C
 | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
\idx{TF}        T type
 | 
| 
 | 
   134  | 
\idx{TI}        tt : T
 | 
| 
 | 
   135  | 
\idx{TE}        [| p : T;  c : C(tt) |] ==> c : C(p)
 | 
| 
 | 
   136  | 
\idx{TEL}       [| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)
 | 
| 
 | 
   137  | 
\idx{TC}        p : T ==> p = tt : T)
 | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
\idx{replace_type}      [| B = A;  a : A |] ==> a : B
 | 
| 
 | 
   141  | 
\idx{subst_eqtyparg}    [| a=c : A;  !!z. z:A ==> B(z) type |] ==> B(a)=B(c)
 | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
\idx{subst_prodE}       [| p: Prod(A,B);  a: A;  !!z. z: B(a) ==> c(z): C(z)
 | 
| 
 | 
   144  | 
                  |] ==> c(p`a): C(p`a)
  | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
\idx{SumIL2}    [| c=a : A;  d=b : B(a) |] ==> <c,d> = <a,b> : Sum(A,B)
 | 
| 
 | 
   147  | 
  | 
| 
 | 
   148  | 
\idx{SumE_fst}  p : Sum(A,B) ==> fst(p) : A
 | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
\idx{SumE_snd}  [| p: Sum(A,B);  A type;  !!x. x:A ==> B(x) type
 | 
| 
 | 
   151  | 
          |] ==> snd(p) : B(fst(p))
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
\idx{add_def}		a#+b == rec(a, b, %u v.succ(v))  
 | 
| 
 | 
   156  | 
\idx{diff_def}		a-b == rec(b, a, %u v.rec(v, 0, %x y.x))  
 | 
| 
 | 
   157  | 
\idx{absdiff_def}	a|-|b == (a-b) #+ (b-a)  
 | 
| 
 | 
   158  | 
\idx{mult_def}		a#*b == rec(a, 0, %u v. b #+ v)  
 | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
\idx{mod_def}	a//b == rec(a, 0, %u v.   
 | 
| 
 | 
   161  | 
  			rec(succ(v) |-| b, 0, %x y.succ(v)))  
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
\idx{quo_def}	a/b == rec(a, 0, %u v.   
 | 
| 
 | 
   164  | 
  			rec(succ(u) // b, succ(v), %x y.v))
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
\idx{add_typing}        [| a:N;  b:N |] ==> a #+ b : N
 | 
| 
 | 
   168  | 
\idx{add_typingL}       [| a=c:N;  b=d:N |] ==> a #+ b = c #+ d : N
 | 
| 
 | 
   169  | 
\idx{addC0}             b:N ==> 0 #+ b = b : N
 | 
| 
 | 
   170  | 
\idx{addC_succ}         [| a:N;  b:N |] ==> succ(a) #+ b = succ(a #+ b) : N
 | 
| 
 | 
   171  | 
\idx{mult_typing}       [| a:N;  b:N |] ==> a #* b : N
 | 
| 
 | 
   172  | 
\idx{mult_typingL}      [| a=c:N;  b=d:N |] ==> a #* b = c #* d : N
 | 
| 
 | 
   173  | 
\idx{multC0}            b:N ==> 0 #* b = 0 : N
 | 
| 
 | 
   174  | 
\idx{multC_succ}        [| a:N;  b:N |] ==> succ(a) #* b = b #+ (a #* b) : N
 | 
| 
 | 
   175  | 
\idx{diff_typing}       [| a:N;  b:N |] ==> a - b : N
 | 
| 
 | 
   176  | 
\idx{diff_typingL}      [| a=c:N;  b=d:N |] ==> a - b = c - d : N
 | 
| 
 | 
   177  | 
\idx{diffC0}            a:N ==> a - 0 = a : N
 | 
| 
 | 
   178  | 
\idx{diff_0_eq_0}       b:N ==> 0 - b = 0 : N
 | 
| 
 | 
   179  | 
  | 
| 
 | 
   180  | 
\idx{diff_succ_succ}    [| a:N;  b:N |] ==> succ(a) - succ(b) = a - b : N
 | 
| 
 | 
   181  | 
  | 
| 
 | 
   182  | 
\idx{add_assoc} [| a:N;  b:N;  c:N |] ==> (a #+ b) #+ c = a #+ (b #+ c) : N
 | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
\idx{add_commute}       [| a:N;  b:N |] ==> a #+ b = b #+ a : N
 | 
| 
 | 
   185  | 
  | 
| 
 | 
   186  | 
\idx{mult_right0}       a:N ==> a #* 0 = 0 : N
 | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
\idx{mult_right_succ}   [| a:N;  b:N |] ==> a #* succ(b) = a #+ (a #* b) : N
 | 
| 
 | 
   189  | 
  | 
| 
 | 
   190  | 
\idx{mult_commute}      [| a:N;  b:N |] ==> a #* b = b #* a : N
 | 
| 
 | 
   191  | 
  | 
| 
 | 
   192  | 
\idx{add_mult_dist}     [| a:N;  b:N;  c:N |] ==> (a #+ b) #* c = (a #* c) #+ (b #* c) : N
 | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
\idx{mult_assoc}        [| a:N;  b:N;  c:N |] ==> (a #* b) #* c = a #* (b #* c) : N
 | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
\idx{diff_self_eq_0}    a:N ==> a - a = 0 : N
 | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
\idx{add_inverse_diff_lemma}    
 | 
| 
 | 
   199  | 
    b:N ==> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
\idx{add_inverse_diff}  [| a:N;  b:N;  b-a = 0 : N |] ==> b #+ (a-b) = a : N
 | 
| 
 | 
   202  | 
  | 
| 
 | 
   203  | 
\idx{absdiff_typing}    [| a:N;  b:N |] ==> a |-| b : N
 | 
| 
 | 
   204  | 
\idx{absdiff_typingL}   [| a=c:N;  b=d:N |] ==> a |-| b = c |-| d : N
 | 
| 
 | 
   205  | 
\idx{absdiff_self_eq_0} a:N ==> a |-| a = 0 : N
 | 
| 
 | 
   206  | 
\idx{absdiffC0}         a:N ==> 0 |-| a = a : N
 | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
\idx{absdiff_succ_succ} [| a:N;  b:N |] ==> succ(a) |-| succ(b)  =  a |-| b : N
 | 
| 
 | 
   209  | 
\idx{absdiff_commute}   [| a:N;  b:N |] ==> a |-| b = b |-| a : N
 | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
\idx{add_eq0_lemma}     [| a:N;  b:N |] ==> ?c : PROD u: Eq(N,a#+b,0) .  Eq(N,a,0)
 | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
\idx{add_eq0}   [| a:N;  b:N;  a #+ b = 0 : N |] ==> a = 0 : N
 | 
| 
 | 
   214  | 
  | 
| 
 | 
   215  | 
\idx{absdiff_eq0_lem}   
 | 
| 
 | 
   216  | 
    [| a:N;  b:N;  a |-| b = 0 : N |] ==> 
  | 
| 
 | 
   217  | 
    ?a : SUM v: Eq(N, a-b, 0) . Eq(N, b-a, 0)
  | 
| 
 | 
   218  | 
  | 
| 
 | 
   219  | 
\idx{absdiff_eq0}       [| a |-| b = 0 : N;  a:N;  b:N |] ==> a = b : N
 | 
| 
 | 
   220  | 
  | 
| 
 | 
   221  | 
\idx{mod_typing}        [| a:N;  b:N |] ==> a//b : N
 | 
| 
 | 
   222  | 
\idx{mod_typingL}       [| a=c:N;  b=d:N |] ==> a//b = c//d : N
 | 
| 
 | 
   223  | 
\idx{modC0}             b:N ==> 0//b = 0 : N
 | 
| 
 | 
   224  | 
\idx{modC_succ} 
 | 
| 
 | 
   225  | 
[| a:N; b:N |] ==> succ(a)//b = rec(succ(a//b) |-| b, 0, %x y.succ(a//b)) : N
  | 
| 
 | 
   226  | 
  | 
| 
 | 
   227  | 
\idx{quo_typing}        [| a:N;  b:N |] ==> a / b : N
 | 
| 
 | 
   228  | 
\idx{quo_typingL}       [| a=c:N;  b=d:N |] ==> a / b = c / d : N
 | 
| 
 | 
   229  | 
\idx{quoC0}             b:N ==> 0 / b = 0 : N
 | 
| 
 | 
   230  | 
[| a:N;  b:N |] ==> succ(a) / b = 
  | 
| 
 | 
   231  | 
    rec(succ(a)//b, succ(a / b), %x y. a / b) : N
  | 
| 
 | 
   232  | 
\idx{quoC_succ2}        [| a:N;  b:N |] ==> 
 | 
| 
 | 
   233  | 
    succ(a) / b =rec(succ(a//b) |-| b, succ(a / b), %x y. a / b) : N
  | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
\idx{iszero_decidable}  
 | 
| 
 | 
   236  | 
    a:N ==> rec(a, inl(eq), %ka kb.inr(<ka, eq>)) : 
  | 
| 
 | 
   237  | 
                      Eq(N,a,0) + (SUM x:N. Eq(N,a, succ(x)))
  | 
| 
 | 
   238  | 
  | 
| 
 | 
   239  | 
\idx{mod_quo_equality}  [| a:N;  b:N |] ==> a//b  #+  (a/b) #* b = a : N
 | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
  |