| 
1478
 | 
     1  | 
(*  Title:      ZF/IMP/Denotation.thy
  | 
| 
482
 | 
     2  | 
    ID:         $Id$
  | 
| 
12610
 | 
     3  | 
    Author:     Heiko Loetzbeyer and Robert Sandner, TU München
  | 
| 
 | 
     4  | 
*)
  | 
| 
511
 | 
     5  | 
  | 
| 
12610
 | 
     6  | 
header {* Denotational semantics of expressions and commands *}
 | 
| 
482
 | 
     7  | 
  | 
| 
16417
 | 
     8  | 
theory Denotation imports Com begin
  | 
| 
12606
 | 
     9  | 
  | 
| 
12610
 | 
    10  | 
subsection {* Definitions *}
 | 
| 
482
 | 
    11  | 
  | 
| 
 | 
    12  | 
consts
  | 
| 
12606
 | 
    13  | 
  A     :: "i => i => i"
  | 
| 
 | 
    14  | 
  B     :: "i => i => i"
  | 
| 
 | 
    15  | 
  C     :: "i => i"
  | 
| 
 | 
    16  | 
  | 
| 
19747
 | 
    17  | 
definition
  | 
| 
12610
 | 
    18  | 
  Gamma :: "[i,i,i] => i"    ("\<Gamma>")
 | 
| 
19749
 | 
    19  | 
  "\<Gamma>(b,cden) ==
  | 
| 
12610
 | 
    20  | 
    (\<lambda>phi. {io \<in> (phi O cden). B(b,fst(io))=1} \<union>
 | 
| 
 | 
    21  | 
           {io \<in> id(loc->nat). B(b,fst(io))=0})"
 | 
| 
482
 | 
    22  | 
  | 
| 
12606
 | 
    23  | 
primrec
  | 
| 
12610
 | 
    24  | 
  "A(N(n), sigma) = n"
  | 
| 
 | 
    25  | 
  "A(X(x), sigma) = sigma`x"
  | 
| 
 | 
    26  | 
  "A(Op1(f,a), sigma) = f`A(a,sigma)"
  | 
| 
 | 
    27  | 
  "A(Op2(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
  | 
| 
482
 | 
    28  | 
  | 
| 
12606
 | 
    29  | 
primrec
  | 
| 
12610
 | 
    30  | 
  "B(true, sigma) = 1"
  | 
| 
 | 
    31  | 
  "B(false, sigma) = 0"
  | 
| 
 | 
    32  | 
  "B(ROp(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
  | 
| 
 | 
    33  | 
  "B(noti(b), sigma) = not(B(b,sigma))"
  | 
| 
 | 
    34  | 
  "B(b0 andi b1, sigma) = B(b0,sigma) and B(b1,sigma)"
  | 
| 
 | 
    35  | 
  "B(b0 ori b1, sigma) = B(b0,sigma) or B(b1,sigma)"
  | 
| 
12606
 | 
    36  | 
  | 
| 
12610
 | 
    37  | 
primrec
  | 
| 
 | 
    38  | 
  "C(\<SKIP>) = id(loc->nat)"
  | 
| 
 | 
    39  | 
  "C(x \<ASSN> a) =
  | 
| 
 | 
    40  | 
    {io \<in> (loc->nat) \<times> (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
 | 
| 
 | 
    41  | 
  "C(c0\<SEQ> c1) = C(c1) O C(c0)"
  | 
| 
 | 
    42  | 
  "C(\<IF> b \<THEN> c0 \<ELSE> c1) =
  | 
| 
 | 
    43  | 
    {io \<in> C(c0). B(b,fst(io)) = 1} \<union> {io \<in> C(c1). B(b,fst(io)) = 0}"
 | 
| 
 | 
    44  | 
  "C(\<WHILE> b \<DO> c) = lfp((loc->nat) \<times> (loc->nat), \<Gamma>(b,C(c)))"
  | 
| 
12606
 | 
    45  | 
  | 
| 
 | 
    46  | 
  | 
| 
12610
 | 
    47  | 
subsection {* Misc lemmas *}
 | 
| 
12606
 | 
    48  | 
  | 
| 
 | 
    49  | 
lemma A_type [TC]: "[|a \<in> aexp; sigma \<in> loc->nat|] ==> A(a,sigma) \<in> nat"
  | 
| 
12610
 | 
    50  | 
  by (erule aexp.induct) simp_all
  | 
| 
12606
 | 
    51  | 
  | 
| 
 | 
    52  | 
lemma B_type [TC]: "[|b \<in> bexp; sigma \<in> loc->nat|] ==> B(b,sigma) \<in> bool"
  | 
| 
 | 
    53  | 
by (erule bexp.induct, simp_all)
  | 
| 
511
 | 
    54  | 
  | 
| 
12610
 | 
    55  | 
lemma C_subset: "c \<in> com ==> C(c) \<subseteq> (loc->nat) \<times> (loc->nat)"
  | 
| 
 | 
    56  | 
  apply (erule com.induct)
  | 
| 
 | 
    57  | 
      apply simp_all
  | 
| 
 | 
    58  | 
      apply (blast dest: lfp_subset [THEN subsetD])+
  | 
| 
 | 
    59  | 
  done
  | 
| 
12606
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma C_type_D [dest]:
  | 
| 
12610
 | 
    62  | 
    "[| <x,y> \<in> C(c); c \<in> com |] ==> x \<in> loc->nat & y \<in> loc->nat"
  | 
| 
 | 
    63  | 
  by (blast dest: C_subset [THEN subsetD])
  | 
| 
482
 | 
    64  | 
  | 
| 
12606
 | 
    65  | 
lemma C_type_fst [dest]: "[| x \<in> C(c); c \<in> com |] ==> fst(x) \<in> loc->nat"
  | 
| 
12610
 | 
    66  | 
  by (auto dest!: C_subset [THEN subsetD])
  | 
| 
482
 | 
    67  | 
  | 
| 
12610
 | 
    68  | 
lemma Gamma_bnd_mono:
  | 
| 
 | 
    69  | 
  "cden \<subseteq> (loc->nat) \<times> (loc->nat)
  | 
| 
 | 
    70  | 
    ==> bnd_mono ((loc->nat) \<times> (loc->nat), \<Gamma>(b,cden))"
  | 
| 
 | 
    71  | 
  by (unfold bnd_mono_def Gamma_def) blast
  | 
| 
482
 | 
    72  | 
  | 
| 
 | 
    73  | 
end
  |