| 
0
 | 
     1  | 
(*  Title: 	ZF/inductive.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
516
 | 
     6  | 
(Co)Inductive Definitions for Zermelo-Fraenkel Set Theory
  | 
| 
0
 | 
     7  | 
  | 
| 
516
 | 
     8  | 
Inductive definitions use least fixedpoints with standard products and sums
  | 
| 
 | 
     9  | 
Coinductive definitions use greatest fixedpoints with Quine products and sums
  | 
| 
0
 | 
    10  | 
  | 
| 
 | 
    11  | 
Sums are used only for mutual recursion;
  | 
| 
 | 
    12  | 
Products are used only to derive "streamlined" induction rules for relations
  | 
| 
 | 
    13  | 
*)
  | 
| 
 | 
    14  | 
  | 
| 
516
 | 
    15  | 
local open Ind_Syntax
  | 
| 
 | 
    16  | 
in
  | 
| 
0
 | 
    17  | 
structure Lfp =
  | 
| 
 | 
    18  | 
  struct
  | 
| 
 | 
    19  | 
  val oper	= Const("lfp",      [iT,iT-->iT]--->iT)
 | 
| 
 | 
    20  | 
  val bnd_mono	= Const("bnd_mono", [iT,iT-->iT]--->oT)
 | 
| 
 | 
    21  | 
  val bnd_monoI	= bnd_monoI
  | 
| 
 | 
    22  | 
  val subs	= def_lfp_subset
  | 
| 
 | 
    23  | 
  val Tarski	= def_lfp_Tarski
  | 
| 
 | 
    24  | 
  val induct	= def_induct
  | 
| 
 | 
    25  | 
  end;
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
structure Standard_Prod =
  | 
| 
 | 
    28  | 
  struct
  | 
| 
 | 
    29  | 
  val sigma	= Const("Sigma", [iT, iT-->iT]--->iT)
 | 
| 
 | 
    30  | 
  val pair	= Const("Pair", [iT,iT]--->iT)
 | 
| 
 | 
    31  | 
  val split_const	= Const("split", [[iT,iT]--->iT, iT]--->iT)
 | 
| 
 | 
    32  | 
  val fsplit_const	= Const("fsplit", [[iT,iT]--->oT, iT]--->oT)
 | 
| 
 | 
    33  | 
  val pair_iff	= Pair_iff
  | 
| 
 | 
    34  | 
  val split_eq	= split
  | 
| 
 | 
    35  | 
  val fsplitI	= fsplitI
  | 
| 
 | 
    36  | 
  val fsplitD	= fsplitD
  | 
| 
 | 
    37  | 
  val fsplitE	= fsplitE
  | 
| 
 | 
    38  | 
  end;
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
structure Standard_Sum =
  | 
| 
 | 
    41  | 
  struct
  | 
| 
 | 
    42  | 
  val sum	= Const("op +", [iT,iT]--->iT)
 | 
| 
 | 
    43  | 
  val inl	= Const("Inl", iT-->iT)
 | 
| 
 | 
    44  | 
  val inr	= Const("Inr", iT-->iT)
 | 
| 
 | 
    45  | 
  val elim	= Const("case", [iT-->iT, iT-->iT, iT]--->iT)
 | 
| 
 | 
    46  | 
  val case_inl	= case_Inl
  | 
| 
 | 
    47  | 
  val case_inr	= case_Inr
  | 
| 
 | 
    48  | 
  val inl_iff	= Inl_iff
  | 
| 
 | 
    49  | 
  val inr_iff	= Inr_iff
  | 
| 
 | 
    50  | 
  val distinct	= Inl_Inr_iff
  | 
| 
 | 
    51  | 
  val distinct' = Inr_Inl_iff
  | 
| 
 | 
    52  | 
  end;
  | 
| 
516
 | 
    53  | 
end;
  | 
| 
0
 | 
    54  | 
  | 
| 
516
 | 
    55  | 
functor Ind_section_Fun (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) 
  | 
| 
 | 
    56  | 
  : sig include INTR_ELIM INDRULE end =
  | 
| 
0
 | 
    57  | 
struct
  | 
| 
 | 
    58  | 
structure Intr_elim = 
  | 
| 
516
 | 
    59  | 
    Intr_elim_Fun(structure Inductive=Inductive and Fp=Lfp and 
  | 
| 
0
 | 
    60  | 
		  Pr=Standard_Prod and Su=Standard_Sum);
  | 
| 
 | 
    61  | 
  | 
| 
516
 | 
    62  | 
structure Indrule = Indrule_Fun (structure Inductive=Inductive and 
  | 
| 
0
 | 
    63  | 
		                 Pr=Standard_Prod and Intr_elim=Intr_elim);
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
open Intr_elim Indrule
  | 
| 
 | 
    66  | 
end;
  | 
| 
 | 
    67  | 
  | 
| 
516
 | 
    68  | 
  | 
| 
 | 
    69  | 
structure Ind = Add_inductive_def_Fun
  | 
| 
 | 
    70  | 
    (structure Fp=Lfp and Pr=Standard_Prod and Su=Standard_Sum);
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
signature INDUCTIVE_STRING =
  | 
| 
 | 
    74  | 
  sig
  | 
| 
 | 
    75  | 
  val thy_name   : string 		(*name of the new theory*)
  | 
| 
 | 
    76  | 
  val rec_doms   : (string*string) list	(*recursion terms and their domains*)
  | 
| 
 | 
    77  | 
  val sintrs     : string list		(*desired introduction rules*)
  | 
| 
 | 
    78  | 
  end;
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
(*For upwards compatibility: can be called directly from ML*)
  | 
| 
 | 
    82  | 
functor Inductive_Fun
  | 
| 
 | 
    83  | 
 (Inductive: sig include INDUCTIVE_STRING INDUCTIVE_ARG end)
  | 
| 
 | 
    84  | 
   : sig include INTR_ELIM INDRULE end =
  | 
| 
 | 
    85  | 
Ind_section_Fun
  | 
| 
 | 
    86  | 
   (open Inductive Ind_Syntax
  | 
| 
 | 
    87  | 
    val sign = sign_of thy;
  | 
| 
 | 
    88  | 
    val rec_tms = map (readtm sign iT o #1) rec_doms
  | 
| 
 | 
    89  | 
    and domts   = map (readtm sign iT o #2) rec_doms
  | 
| 
 | 
    90  | 
    and intr_tms = map (readtm sign propT) sintrs;
  | 
| 
 | 
    91  | 
    val thy = thy |> Ind.add_fp_def_i(rec_tms, domts, intr_tms) 
  | 
| 
 | 
    92  | 
                  |> add_thyname thy_name);
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
  | 
| 
 | 
    96  | 
local open Ind_Syntax
  | 
| 
 | 
    97  | 
in
  | 
| 
 | 
    98  | 
structure Gfp =
  | 
| 
 | 
    99  | 
  struct
  | 
| 
 | 
   100  | 
  val oper	= Const("gfp",      [iT,iT-->iT]--->iT)
 | 
| 
 | 
   101  | 
  val bnd_mono	= Const("bnd_mono", [iT,iT-->iT]--->oT)
 | 
| 
 | 
   102  | 
  val bnd_monoI	= bnd_monoI
  | 
| 
 | 
   103  | 
  val subs	= def_gfp_subset
  | 
| 
 | 
   104  | 
  val Tarski	= def_gfp_Tarski
  | 
| 
 | 
   105  | 
  val induct	= def_Collect_coinduct
  | 
| 
 | 
   106  | 
  end;
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
structure Quine_Prod =
  | 
| 
 | 
   109  | 
  struct
  | 
| 
 | 
   110  | 
  val sigma	= Const("QSigma", [iT, iT-->iT]--->iT)
 | 
| 
 | 
   111  | 
  val pair	= Const("QPair", [iT,iT]--->iT)
 | 
| 
 | 
   112  | 
  val split_const	= Const("qsplit", [[iT,iT]--->iT, iT]--->iT)
 | 
| 
 | 
   113  | 
  val fsplit_const	= Const("qfsplit", [[iT,iT]--->oT, iT]--->oT)
 | 
| 
 | 
   114  | 
  val pair_iff	= QPair_iff
  | 
| 
 | 
   115  | 
  val split_eq	= qsplit
  | 
| 
 | 
   116  | 
  val fsplitI	= qfsplitI
  | 
| 
 | 
   117  | 
  val fsplitD	= qfsplitD
  | 
| 
 | 
   118  | 
  val fsplitE	= qfsplitE
  | 
| 
 | 
   119  | 
  end;
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
structure Quine_Sum =
  | 
| 
 | 
   122  | 
  struct
  | 
| 
 | 
   123  | 
  val sum	= Const("op <+>", [iT,iT]--->iT)
 | 
| 
 | 
   124  | 
  val inl	= Const("QInl", iT-->iT)
 | 
| 
 | 
   125  | 
  val inr	= Const("QInr", iT-->iT)
 | 
| 
 | 
   126  | 
  val elim	= Const("qcase", [iT-->iT, iT-->iT, iT]--->iT)
 | 
| 
 | 
   127  | 
  val case_inl	= qcase_QInl
  | 
| 
 | 
   128  | 
  val case_inr	= qcase_QInr
  | 
| 
 | 
   129  | 
  val inl_iff	= QInl_iff
  | 
| 
 | 
   130  | 
  val inr_iff	= QInr_iff
  | 
| 
 | 
   131  | 
  val distinct	= QInl_QInr_iff
  | 
| 
 | 
   132  | 
  val distinct' = QInr_QInl_iff
  | 
| 
 | 
   133  | 
  end;
  | 
| 
 | 
   134  | 
end;
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
signature COINDRULE =
  | 
| 
 | 
   138  | 
  sig
  | 
| 
 | 
   139  | 
  val coinduct : thm
  | 
| 
 | 
   140  | 
  end;
  | 
| 
 | 
   141  | 
  | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
functor CoInd_section_Fun
  | 
| 
 | 
   144  | 
 (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) 
  | 
| 
 | 
   145  | 
    : sig include INTR_ELIM COINDRULE end =
  | 
| 
 | 
   146  | 
struct
  | 
| 
 | 
   147  | 
structure Intr_elim = 
  | 
| 
 | 
   148  | 
    Intr_elim_Fun(structure Inductive=Inductive and Fp=Gfp and 
  | 
| 
 | 
   149  | 
		  Pr=Quine_Prod and Su=Quine_Sum);
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
open Intr_elim 
  | 
| 
 | 
   152  | 
val coinduct = raw_induct
  | 
| 
 | 
   153  | 
end;
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
structure CoInd = 
  | 
| 
 | 
   157  | 
    Add_inductive_def_Fun(structure Fp=Gfp and Pr=Quine_Prod and Su=Quine_Sum);
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
(*For upwards compatibility: can be called directly from ML*)
  | 
| 
 | 
   161  | 
functor CoInductive_Fun
  | 
| 
 | 
   162  | 
 (Inductive: sig include INDUCTIVE_STRING INDUCTIVE_ARG end)
  | 
| 
 | 
   163  | 
   : sig include INTR_ELIM COINDRULE end =
  | 
| 
 | 
   164  | 
CoInd_section_Fun
  | 
| 
 | 
   165  | 
   (open Inductive Ind_Syntax
  | 
| 
 | 
   166  | 
    val sign = sign_of thy;
  | 
| 
 | 
   167  | 
    val rec_tms = map (readtm sign iT o #1) rec_doms
  | 
| 
 | 
   168  | 
    and domts   = map (readtm sign iT o #2) rec_doms
  | 
| 
 | 
   169  | 
    and intr_tms = map (readtm sign propT) sintrs;
  | 
| 
 | 
   170  | 
    val thy = thy |> CoInd.add_fp_def_i(rec_tms, domts, intr_tms) 
  | 
| 
 | 
   171  | 
                  |> add_thyname thy_name);
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
(*For installing the theory section.   co is either "" or "Co"*)
  | 
| 
 | 
   176  | 
fun inductive_decl co =
  | 
| 
 | 
   177  | 
  let open ThyParse Ind_Syntax
  | 
| 
 | 
   178  | 
      fun mk_intr_name (s,_) =  (*the "op" cancels any infix status*)
  | 
| 
 | 
   179  | 
	  if Syntax.is_identifier s then "op " ^ s  else "_"
  | 
| 
 | 
   180  | 
      fun mk_params (((((domains: (string*string) list, ipairs), 
  | 
| 
 | 
   181  | 
			monos), con_defs), type_intrs), type_elims) =
  | 
| 
 | 
   182  | 
        let val big_rec_name = space_implode "_" 
  | 
| 
 | 
   183  | 
		             (map (scan_to_id o trim o #1) domains)
  | 
| 
 | 
   184  | 
	    and srec_tms = mk_list (map #1 domains)
  | 
| 
 | 
   185  | 
            and sdoms    = mk_list (map #2 domains)
  | 
| 
 | 
   186  | 
	    and sintrs   = mk_big_list (map snd ipairs)
  | 
| 
 | 
   187  | 
            val stri_name = big_rec_name ^ "_Intrnl"
  | 
| 
 | 
   188  | 
        in
  | 
| 
 | 
   189  | 
	   (";\n\n\
 | 
| 
 | 
   190  | 
            \structure " ^ stri_name ^ " =\n\
  | 
| 
 | 
   191  | 
            \ let open Ind_Syntax in\n\
  | 
| 
 | 
   192  | 
            \  struct\n\
  | 
| 
 | 
   193  | 
            \  val rec_tms\t= map (readtm (sign_of thy) iT) "
  | 
| 
 | 
   194  | 
	                     ^ srec_tms ^ "\n\
  | 
| 
 | 
   195  | 
            \  and domts\t= map (readtm (sign_of thy) iT) "
  | 
| 
 | 
   196  | 
	                     ^ sdoms ^ "\n\
  | 
| 
 | 
   197  | 
            \  and intr_tms\t= map (readtm (sign_of thy) propT)\n"
  | 
| 
 | 
   198  | 
	                     ^ sintrs ^ "\n\
  | 
| 
 | 
   199  | 
            \  end\n\
  | 
| 
 | 
   200  | 
            \ end;\n\n\
  | 
| 
 | 
   201  | 
            \val thy = thy |> " ^ co ^ "Ind.add_fp_def_i \n    (" ^ 
 | 
| 
 | 
   202  | 
	       stri_name ^ ".rec_tms, " ^
  | 
| 
 | 
   203  | 
               stri_name ^ ".domts, " ^
  | 
| 
 | 
   204  | 
               stri_name ^ ".intr_tms)"
  | 
| 
 | 
   205  | 
           ,
  | 
| 
 | 
   206  | 
	    "structure " ^ big_rec_name ^ " =\n\
  | 
| 
 | 
   207  | 
            \  struct\n\
  | 
| 
 | 
   208  | 
            \  val _ = writeln \"" ^ co ^ 
  | 
| 
 | 
   209  | 
	               "Inductive definition " ^ big_rec_name ^ "\"\n\
  | 
| 
 | 
   210  | 
            \  structure Result = " ^ co ^ "Ind_section_Fun\n\
  | 
| 
 | 
   211  | 
            \  (open " ^ stri_name ^ "\n\
  | 
| 
 | 
   212  | 
            \   val thy\t\t= thy\n\
  | 
| 
 | 
   213  | 
            \   val monos\t\t= " ^ monos ^ "\n\
  | 
| 
 | 
   214  | 
            \   val con_defs\t\t= " ^ con_defs ^ "\n\
  | 
| 
 | 
   215  | 
            \   val type_intrs\t= " ^ type_intrs ^ "\n\
  | 
| 
 | 
   216  | 
            \   val type_elims\t= " ^ type_elims ^ ");\n\n\
  | 
| 
 | 
   217  | 
            \  val " ^ mk_list (map mk_intr_name ipairs) ^ " = Result.intrs;\n\
  | 
| 
 | 
   218  | 
            \  open Result\n\
  | 
| 
 | 
   219  | 
            \  end\n"
  | 
| 
 | 
   220  | 
	   )
  | 
| 
 | 
   221  | 
	end
  | 
| 
 | 
   222  | 
      val domains = "domains" $$-- repeat1 (string --$$ "<=" -- !! string)
  | 
| 
 | 
   223  | 
      val ipairs  = "intrs"   $$-- repeat1 (ident -- !! string)
  | 
| 
 | 
   224  | 
      fun optstring s = optional (s $$-- string) "\"[]\"" >> trim
  | 
| 
 | 
   225  | 
  in domains -- ipairs -- optstring "monos" -- optstring "con_defs"
  | 
| 
 | 
   226  | 
             -- optstring "type_intrs" -- optstring "type_elims"
  | 
| 
 | 
   227  | 
     >> mk_params
  | 
| 
 | 
   228  | 
  end;
  |