| author | paulson <lp15@cam.ac.uk> | 
| Wed, 02 Apr 2014 16:45:31 +0100 | |
| changeset 56366 | 0362c3bb4d02 | 
| parent 56045 | 1ca060139a59 | 
| child 56993 | e5366291d6aa | 
| permissions | -rw-r--r-- | 
| 50530 | 1 | (* Title: HOL/Probability/Measurable.thy | 
| 50387 | 2 | Author: Johannes Hölzl <hoelzl@in.tum.de> | 
| 3 | *) | |
| 4 | theory Measurable | |
| 56021 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 5 | imports | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 6 | Sigma_Algebra | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 7 | "~~/src/HOL/Library/Order_Continuity" | 
| 50387 | 8 | begin | 
| 9 | ||
| 56021 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 10 | hide_const (open) Order_Continuity.continuous | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 11 | |
| 50387 | 12 | subsection {* Measurability prover *}
 | 
| 13 | ||
| 14 | lemma (in algebra) sets_Collect_finite_All: | |
| 15 |   assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S"
 | |
| 16 |   shows "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} \<in> M"
 | |
| 17 | proof - | |
| 18 |   have "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} = (if S = {} then \<Omega> else \<Inter>i\<in>S. {x\<in>\<Omega>. P i x})"
 | |
| 19 | by auto | |
| 20 | with assms show ?thesis by (auto intro!: sets_Collect_finite_All') | |
| 21 | qed | |
| 22 | ||
| 23 | abbreviation "pred M P \<equiv> P \<in> measurable M (count_space (UNIV::bool set))" | |
| 24 | ||
| 25 | lemma pred_def: "pred M P \<longleftrightarrow> {x\<in>space M. P x} \<in> sets M"
 | |
| 26 | proof | |
| 27 | assume "pred M P" | |
| 28 |   then have "P -` {True} \<inter> space M \<in> sets M"
 | |
| 29 | by (auto simp: measurable_count_space_eq2) | |
| 30 |   also have "P -` {True} \<inter> space M = {x\<in>space M. P x}" by auto
 | |
| 31 |   finally show "{x\<in>space M. P x} \<in> sets M" .
 | |
| 32 | next | |
| 33 |   assume P: "{x\<in>space M. P x} \<in> sets M"
 | |
| 34 | moreover | |
| 35 |   { fix X
 | |
| 36 | have "X \<in> Pow (UNIV :: bool set)" by simp | |
| 37 |     then have "P -` X \<inter> space M = {x\<in>space M. ((X = {True} \<longrightarrow> P x) \<and> (X = {False} \<longrightarrow> \<not> P x) \<and> X \<noteq> {})}"
 | |
| 38 | unfolding UNIV_bool Pow_insert Pow_empty by auto | |
| 39 | then have "P -` X \<inter> space M \<in> sets M" | |
| 40 | by (auto intro!: sets.sets_Collect_neg sets.sets_Collect_imp sets.sets_Collect_conj sets.sets_Collect_const P) } | |
| 41 | then show "pred M P" | |
| 42 | by (auto simp: measurable_def) | |
| 43 | qed | |
| 44 | ||
| 45 | lemma pred_sets1: "{x\<in>space M. P x} \<in> sets M \<Longrightarrow> f \<in> measurable N M \<Longrightarrow> pred N (\<lambda>x. P (f x))"
 | |
| 46 | by (rule measurable_compose[where f=f and N=M]) (auto simp: pred_def) | |
| 47 | ||
| 48 | lemma pred_sets2: "A \<in> sets N \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> pred M (\<lambda>x. f x \<in> A)" | |
| 49 | by (rule measurable_compose[where f=f and N=N]) (auto simp: pred_def Int_def[symmetric]) | |
| 50 | ||
| 51 | ML_file "measurable.ML" | |
| 52 | ||
| 53043 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 53 | attribute_setup measurable = {*
 | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 54 | Scan.lift (Scan.optional (Args.parens (Scan.optional (Args.$$$ "raw" >> K true) false -- | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 55 | Scan.optional (Args.$$$ "generic" >> K Measurable.Generic) Measurable.Concrete)) | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 56 | (false, Measurable.Concrete) >> (Thm.declaration_attribute o Measurable.add_thm)) | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 57 | *} "declaration of measurability theorems" | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 58 | |
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 59 | attribute_setup measurable_dest = {*
 | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 60 | Scan.lift (Scan.succeed (Thm.declaration_attribute Measurable.add_dest)) | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 61 | *} "add dest rule for measurability prover" | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 62 | |
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 63 | attribute_setup measurable_app = {*
 | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 64 | Scan.lift (Scan.succeed (Thm.declaration_attribute Measurable.add_app)) | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 65 | *} "add application rule for measurability prover" | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 66 | |
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 67 | method_setup measurable = {*
 | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 68 | Scan.lift (Scan.succeed (fn ctxt => METHOD (fn facts => Measurable.measurable_tac ctxt facts))) | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 69 | *} "measurability prover" | 
| 
8cbfbeb566a4
more standard attribute_setup / method_setup -- export key ML operations instead of parsers;
 wenzelm parents: 
50530diff
changeset | 70 | |
| 50387 | 71 | simproc_setup measurable ("A \<in> sets M" | "f \<in> measurable M N") = {* K Measurable.simproc *}
 | 
| 72 | ||
| 73 | declare | |
| 74 | measurable_compose_rev[measurable_dest] | |
| 75 | pred_sets1[measurable_dest] | |
| 76 | pred_sets2[measurable_dest] | |
| 77 | sets.sets_into_space[measurable_dest] | |
| 78 | ||
| 79 | declare | |
| 80 | sets.top[measurable] | |
| 81 | sets.empty_sets[measurable (raw)] | |
| 82 | sets.Un[measurable (raw)] | |
| 83 | sets.Diff[measurable (raw)] | |
| 84 | ||
| 85 | declare | |
| 86 | measurable_count_space[measurable (raw)] | |
| 87 | measurable_ident[measurable (raw)] | |
| 88 | measurable_ident_sets[measurable (raw)] | |
| 89 | measurable_const[measurable (raw)] | |
| 90 | measurable_If[measurable (raw)] | |
| 91 | measurable_comp[measurable (raw)] | |
| 92 | measurable_sets[measurable (raw)] | |
| 93 | ||
| 94 | lemma predE[measurable (raw)]: | |
| 95 |   "pred M P \<Longrightarrow> {x\<in>space M. P x} \<in> sets M"
 | |
| 96 | unfolding pred_def . | |
| 97 | ||
| 98 | lemma pred_intros_imp'[measurable (raw)]: | |
| 99 | "(K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. K \<longrightarrow> P x)" | |
| 100 | by (cases K) auto | |
| 101 | ||
| 102 | lemma pred_intros_conj1'[measurable (raw)]: | |
| 103 | "(K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. K \<and> P x)" | |
| 104 | by (cases K) auto | |
| 105 | ||
| 106 | lemma pred_intros_conj2'[measurable (raw)]: | |
| 107 | "(K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. P x \<and> K)" | |
| 108 | by (cases K) auto | |
| 109 | ||
| 110 | lemma pred_intros_disj1'[measurable (raw)]: | |
| 111 | "(\<not> K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. K \<or> P x)" | |
| 112 | by (cases K) auto | |
| 113 | ||
| 114 | lemma pred_intros_disj2'[measurable (raw)]: | |
| 115 | "(\<not> K \<Longrightarrow> pred M (\<lambda>x. P x)) \<Longrightarrow> pred M (\<lambda>x. P x \<or> K)" | |
| 116 | by (cases K) auto | |
| 117 | ||
| 118 | lemma pred_intros_logic[measurable (raw)]: | |
| 119 | "pred M (\<lambda>x. x \<in> space M)" | |
| 120 | "pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. \<not> P x)" | |
| 121 | "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x \<and> P x)" | |
| 122 | "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x \<longrightarrow> P x)" | |
| 123 | "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x \<or> P x)" | |
| 124 | "pred M (\<lambda>x. Q x) \<Longrightarrow> pred M (\<lambda>x. P x) \<Longrightarrow> pred M (\<lambda>x. Q x = P x)" | |
| 125 | "pred M (\<lambda>x. f x \<in> UNIV)" | |
| 126 |   "pred M (\<lambda>x. f x \<in> {})"
 | |
| 127 |   "pred M (\<lambda>x. P' (f x) x) \<Longrightarrow> pred M (\<lambda>x. f x \<in> {y. P' y x})"
 | |
| 128 | "pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> - (B x))" | |
| 129 | "pred M (\<lambda>x. f x \<in> (A x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (A x) - (B x))" | |
| 130 | "pred M (\<lambda>x. f x \<in> (A x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (A x) \<inter> (B x))" | |
| 131 | "pred M (\<lambda>x. f x \<in> (A x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (B x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (A x) \<union> (B x))" | |
| 132 | "pred M (\<lambda>x. g x (f x) \<in> (X x)) \<Longrightarrow> pred M (\<lambda>x. f x \<in> (g x) -` (X x))" | |
| 133 | by (auto simp: iff_conv_conj_imp pred_def) | |
| 134 | ||
| 135 | lemma pred_intros_countable[measurable (raw)]: | |
| 136 | fixes P :: "'a \<Rightarrow> 'i :: countable \<Rightarrow> bool" | |
| 137 | shows | |
| 138 | "(\<And>i. pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<forall>i. P x i)" | |
| 139 | "(\<And>i. pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<exists>i. P x i)" | |
| 140 | by (auto intro!: sets.sets_Collect_countable_All sets.sets_Collect_countable_Ex simp: pred_def) | |
| 141 | ||
| 142 | lemma pred_intros_countable_bounded[measurable (raw)]: | |
| 143 | fixes X :: "'i :: countable set" | |
| 144 | shows | |
| 145 | "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Inter>i\<in>X. N x i))" | |
| 146 | "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Union>i\<in>X. N x i))" | |
| 147 | "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<forall>i\<in>X. P x i)" | |
| 148 | "(\<And>i. i \<in> X \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<exists>i\<in>X. P x i)" | |
| 149 | by (auto simp: Bex_def Ball_def) | |
| 150 | ||
| 151 | lemma pred_intros_finite[measurable (raw)]: | |
| 152 | "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Inter>i\<in>I. N x i))" | |
| 153 | "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. x \<in> N x i)) \<Longrightarrow> pred M (\<lambda>x. x \<in> (\<Union>i\<in>I. N x i))" | |
| 154 | "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<forall>i\<in>I. P x i)" | |
| 155 | "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> pred M (\<lambda>x. P x i)) \<Longrightarrow> pred M (\<lambda>x. \<exists>i\<in>I. P x i)" | |
| 156 | by (auto intro!: sets.sets_Collect_finite_Ex sets.sets_Collect_finite_All simp: iff_conv_conj_imp pred_def) | |
| 157 | ||
| 158 | lemma countable_Un_Int[measurable (raw)]: | |
| 159 | "(\<And>i :: 'i :: countable. i \<in> I \<Longrightarrow> N i \<in> sets M) \<Longrightarrow> (\<Union>i\<in>I. N i) \<in> sets M" | |
| 160 |   "I \<noteq> {} \<Longrightarrow> (\<And>i :: 'i :: countable. i \<in> I \<Longrightarrow> N i \<in> sets M) \<Longrightarrow> (\<Inter>i\<in>I. N i) \<in> sets M"
 | |
| 161 | by auto | |
| 162 | ||
| 163 | declare | |
| 164 | finite_UN[measurable (raw)] | |
| 165 | finite_INT[measurable (raw)] | |
| 166 | ||
| 167 | lemma sets_Int_pred[measurable (raw)]: | |
| 168 | assumes space: "A \<inter> B \<subseteq> space M" and [measurable]: "pred M (\<lambda>x. x \<in> A)" "pred M (\<lambda>x. x \<in> B)" | |
| 169 | shows "A \<inter> B \<in> sets M" | |
| 170 | proof - | |
| 171 |   have "{x\<in>space M. x \<in> A \<inter> B} \<in> sets M" by auto
 | |
| 172 |   also have "{x\<in>space M. x \<in> A \<inter> B} = A \<inter> B"
 | |
| 173 | using space by auto | |
| 174 | finally show ?thesis . | |
| 175 | qed | |
| 176 | ||
| 177 | lemma [measurable (raw generic)]: | |
| 178 |   assumes f: "f \<in> measurable M N" and c: "c \<in> space N \<Longrightarrow> {c} \<in> sets N"
 | |
| 179 | shows pred_eq_const1: "pred M (\<lambda>x. f x = c)" | |
| 180 | and pred_eq_const2: "pred M (\<lambda>x. c = f x)" | |
| 181 | proof - | |
| 182 | show "pred M (\<lambda>x. f x = c)" | |
| 183 | proof cases | |
| 184 | assume "c \<in> space N" | |
| 185 | with measurable_sets[OF f c] show ?thesis | |
| 186 | by (auto simp: Int_def conj_commute pred_def) | |
| 187 | next | |
| 188 | assume "c \<notin> space N" | |
| 189 |     with f[THEN measurable_space] have "{x \<in> space M. f x = c} = {}" by auto
 | |
| 190 | then show ?thesis by (auto simp: pred_def cong: conj_cong) | |
| 191 | qed | |
| 192 | then show "pred M (\<lambda>x. c = f x)" | |
| 193 | by (simp add: eq_commute) | |
| 194 | qed | |
| 195 | ||
| 196 | lemma pred_le_const[measurable (raw generic)]: | |
| 197 |   assumes f: "f \<in> measurable M N" and c: "{.. c} \<in> sets N" shows "pred M (\<lambda>x. f x \<le> c)"
 | |
| 198 | using measurable_sets[OF f c] | |
| 199 | by (auto simp: Int_def conj_commute eq_commute pred_def) | |
| 200 | ||
| 201 | lemma pred_const_le[measurable (raw generic)]: | |
| 202 |   assumes f: "f \<in> measurable M N" and c: "{c ..} \<in> sets N" shows "pred M (\<lambda>x. c \<le> f x)"
 | |
| 203 | using measurable_sets[OF f c] | |
| 204 | by (auto simp: Int_def conj_commute eq_commute pred_def) | |
| 205 | ||
| 206 | lemma pred_less_const[measurable (raw generic)]: | |
| 207 |   assumes f: "f \<in> measurable M N" and c: "{..< c} \<in> sets N" shows "pred M (\<lambda>x. f x < c)"
 | |
| 208 | using measurable_sets[OF f c] | |
| 209 | by (auto simp: Int_def conj_commute eq_commute pred_def) | |
| 210 | ||
| 211 | lemma pred_const_less[measurable (raw generic)]: | |
| 212 |   assumes f: "f \<in> measurable M N" and c: "{c <..} \<in> sets N" shows "pred M (\<lambda>x. c < f x)"
 | |
| 213 | using measurable_sets[OF f c] | |
| 214 | by (auto simp: Int_def conj_commute eq_commute pred_def) | |
| 215 | ||
| 216 | declare | |
| 217 | sets.Int[measurable (raw)] | |
| 218 | ||
| 219 | lemma pred_in_If[measurable (raw)]: | |
| 220 | "(P \<Longrightarrow> pred M (\<lambda>x. x \<in> A x)) \<Longrightarrow> (\<not> P \<Longrightarrow> pred M (\<lambda>x. x \<in> B x)) \<Longrightarrow> | |
| 221 | pred M (\<lambda>x. x \<in> (if P then A x else B x))" | |
| 222 | by auto | |
| 223 | ||
| 224 | lemma sets_range[measurable_dest]: | |
| 225 | "A ` I \<subseteq> sets M \<Longrightarrow> i \<in> I \<Longrightarrow> A i \<in> sets M" | |
| 226 | by auto | |
| 227 | ||
| 228 | lemma pred_sets_range[measurable_dest]: | |
| 229 | "A ` I \<subseteq> sets N \<Longrightarrow> i \<in> I \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> pred M (\<lambda>x. f x \<in> A i)" | |
| 230 | using pred_sets2[OF sets_range] by auto | |
| 231 | ||
| 232 | lemma sets_All[measurable_dest]: | |
| 233 | "\<forall>i. A i \<in> sets (M i) \<Longrightarrow> A i \<in> sets (M i)" | |
| 234 | by auto | |
| 235 | ||
| 236 | lemma pred_sets_All[measurable_dest]: | |
| 237 | "\<forall>i. A i \<in> sets (N i) \<Longrightarrow> f \<in> measurable M (N i) \<Longrightarrow> pred M (\<lambda>x. f x \<in> A i)" | |
| 238 | using pred_sets2[OF sets_All, of A N f] by auto | |
| 239 | ||
| 240 | lemma sets_Ball[measurable_dest]: | |
| 241 | "\<forall>i\<in>I. A i \<in> sets (M i) \<Longrightarrow> i\<in>I \<Longrightarrow> A i \<in> sets (M i)" | |
| 242 | by auto | |
| 243 | ||
| 244 | lemma pred_sets_Ball[measurable_dest]: | |
| 245 | "\<forall>i\<in>I. A i \<in> sets (N i) \<Longrightarrow> i\<in>I \<Longrightarrow> f \<in> measurable M (N i) \<Longrightarrow> pred M (\<lambda>x. f x \<in> A i)" | |
| 246 | using pred_sets2[OF sets_Ball, of _ _ _ f] by auto | |
| 247 | ||
| 248 | lemma measurable_finite[measurable (raw)]: | |
| 249 | fixes S :: "'a \<Rightarrow> nat set" | |
| 250 |   assumes [measurable]: "\<And>i. {x\<in>space M. i \<in> S x} \<in> sets M"
 | |
| 251 | shows "pred M (\<lambda>x. finite (S x))" | |
| 252 | unfolding finite_nat_set_iff_bounded by (simp add: Ball_def) | |
| 253 | ||
| 254 | lemma measurable_Least[measurable]: | |
| 255 | assumes [measurable]: "(\<And>i::nat. (\<lambda>x. P i x) \<in> measurable M (count_space UNIV))"q | |
| 256 | shows "(\<lambda>x. LEAST i. P i x) \<in> measurable M (count_space UNIV)" | |
| 257 | unfolding measurable_def by (safe intro!: sets_Least) simp_all | |
| 258 | ||
| 259 | lemma measurable_count_space_insert[measurable (raw)]: | |
| 260 | "s \<in> S \<Longrightarrow> A \<in> sets (count_space S) \<Longrightarrow> insert s A \<in> sets (count_space S)" | |
| 261 | by simp | |
| 262 | ||
| 56021 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 263 | subsection {* Measurability for (co)inductive predicates *}
 | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 264 | |
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 265 | lemma measurable_lfp: | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 266 | assumes "Order_Continuity.continuous F" | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 267 | assumes *: "\<And>A. pred M A \<Longrightarrow> pred M (F A)" | 
| 56045 | 268 | shows "pred M (lfp F)" | 
| 56021 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 269 | proof - | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 270 |   { fix i have "Measurable.pred M (\<lambda>x. (F ^^ i) (\<lambda>x. False) x)"
 | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 271 | by (induct i) (auto intro!: *) } | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 272 | then have "Measurable.pred M (\<lambda>x. \<exists>i. (F ^^ i) (\<lambda>x. False) x)" | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 273 | by measurable | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 274 | also have "(\<lambda>x. \<exists>i. (F ^^ i) (\<lambda>x. False) x) = (SUP i. (F ^^ i) bot)" | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 275 | by (auto simp add: bot_fun_def) | 
| 56045 | 276 | also have "\<dots> = lfp F" | 
| 277 | by (rule continuous_lfp[symmetric]) fact | |
| 56021 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 278 | finally show ?thesis . | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 279 | qed | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 280 | |
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 281 | lemma measurable_gfp: | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 282 | assumes "Order_Continuity.down_continuous F" | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 283 | assumes *: "\<And>A. pred M A \<Longrightarrow> pred M (F A)" | 
| 56045 | 284 | shows "pred M (gfp F)" | 
| 56021 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 285 | proof - | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 286 |   { fix i have "Measurable.pred M (\<lambda>x. (F ^^ i) (\<lambda>x. True) x)"
 | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 287 | by (induct i) (auto intro!: *) } | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 288 | then have "Measurable.pred M (\<lambda>x. \<forall>i. (F ^^ i) (\<lambda>x. True) x)" | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 289 | by measurable | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 290 | also have "(\<lambda>x. \<forall>i. (F ^^ i) (\<lambda>x. True) x) = (INF i. (F ^^ i) top)" | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 291 | by (auto simp add: top_fun_def) | 
| 56045 | 292 | also have "\<dots> = gfp F" | 
| 293 | by (rule down_continuous_gfp[symmetric]) fact | |
| 56021 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 294 | finally show ?thesis . | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 295 | qed | 
| 
e0c9d76c2a6d
add measurability rule for (co)inductive predicates
 hoelzl parents: 
53043diff
changeset | 296 | |
| 50387 | 297 | hide_const (open) pred | 
| 298 | ||
| 299 | end |