| author | haftmann | 
| Thu, 14 May 2009 09:16:33 +0200 | |
| changeset 31150 | 03a87478b89e | 
| parent 30684 | c98a64746c69 | 
| child 31706 | 1db0c8f235fb | 
| permissions | -rw-r--r-- | 
| 30439 | 1 | (* Title: HOL/Decision_Procs/Ferrack.thy | 
| 29789 | 2 | Author: Amine Chaieb | 
| 3 | *) | |
| 4 | ||
| 5 | theory Ferrack | |
| 29818 | 6 | imports Complex_Main Dense_Linear_Order Efficient_Nat | 
| 29789 | 7 | uses ("ferrack_tac.ML")
 | 
| 8 | begin | |
| 9 | ||
| 10 | section {* Quantifier elimination for @{text "\<real> (0, 1, +, <)"} *}
 | |
| 11 | ||
| 12 | (*********************************************************************************) | |
| 13 | (* SOME GENERAL STUFF< HAS TO BE MOVED IN SOME LIB *) | |
| 14 | (*********************************************************************************) | |
| 15 | ||
| 16 | consts alluopairs:: "'a list \<Rightarrow> ('a \<times> 'a) list"
 | |
| 17 | primrec | |
| 18 | "alluopairs [] = []" | |
| 19 | "alluopairs (x#xs) = (map (Pair x) (x#xs))@(alluopairs xs)" | |
| 20 | ||
| 21 | lemma alluopairs_set1: "set (alluopairs xs) \<le> {(x,y). x\<in> set xs \<and> y\<in> set xs}"
 | |
| 22 | by (induct xs, auto) | |
| 23 | ||
| 24 | lemma alluopairs_set: | |
| 25 | "\<lbrakk>x\<in> set xs ; y \<in> set xs\<rbrakk> \<Longrightarrow> (x,y) \<in> set (alluopairs xs) \<or> (y,x) \<in> set (alluopairs xs) " | |
| 26 | by (induct xs, auto) | |
| 27 | ||
| 28 | lemma alluopairs_ex: | |
| 29 | assumes Pc: "\<forall> x y. P x y = P y x" | |
| 30 | shows "(\<exists> x \<in> set xs. \<exists> y \<in> set xs. P x y) = (\<exists> (x,y) \<in> set (alluopairs xs). P x y)" | |
| 31 | proof | |
| 32 | assume "\<exists>x\<in>set xs. \<exists>y\<in>set xs. P x y" | |
| 33 | then obtain x y where x: "x \<in> set xs" and y:"y \<in> set xs" and P: "P x y" by blast | |
| 34 | from alluopairs_set[OF x y] P Pc show"\<exists>(x, y)\<in>set (alluopairs xs). P x y" | |
| 35 | by auto | |
| 36 | next | |
| 37 | assume "\<exists>(x, y)\<in>set (alluopairs xs). P x y" | |
| 38 | then obtain "x" and "y" where xy:"(x,y) \<in> set (alluopairs xs)" and P: "P x y" by blast+ | |
| 39 | from xy have "x \<in> set xs \<and> y\<in> set xs" using alluopairs_set1 by blast | |
| 40 | with P show "\<exists>x\<in>set xs. \<exists>y\<in>set xs. P x y" by blast | |
| 41 | qed | |
| 42 | ||
| 43 | lemma nth_pos2: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)" | |
| 44 | using Nat.gr0_conv_Suc | |
| 45 | by clarsimp | |
| 46 | ||
| 47 | lemma filter_length: "length (List.filter P xs) < Suc (length xs)" | |
| 48 | apply (induct xs, auto) done | |
| 49 | ||
| 50 | consts remdps:: "'a list \<Rightarrow> 'a list" | |
| 51 | ||
| 52 | recdef remdps "measure size" | |
| 53 | "remdps [] = []" | |
| 54 | "remdps (x#xs) = (x#(remdps (List.filter (\<lambda> y. y \<noteq> x) xs)))" | |
| 55 | (hints simp add: filter_length[rule_format]) | |
| 56 | ||
| 57 | lemma remdps_set[simp]: "set (remdps xs) = set xs" | |
| 58 | by (induct xs rule: remdps.induct, auto) | |
| 59 | ||
| 60 | ||
| 61 | ||
| 62 | (*********************************************************************************) | |
| 63 | (**** SHADOW SYNTAX AND SEMANTICS ****) | |
| 64 | (*********************************************************************************) | |
| 65 | ||
| 66 | datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num | |
| 67 | | Mul int num | |
| 68 | ||
| 69 | (* A size for num to make inductive proofs simpler*) | |
| 70 | consts num_size :: "num \<Rightarrow> nat" | |
| 71 | primrec | |
| 72 | "num_size (C c) = 1" | |
| 73 | "num_size (Bound n) = 1" | |
| 74 | "num_size (Neg a) = 1 + num_size a" | |
| 75 | "num_size (Add a b) = 1 + num_size a + num_size b" | |
| 76 | "num_size (Sub a b) = 3 + num_size a + num_size b" | |
| 77 | "num_size (Mul c a) = 1 + num_size a" | |
| 78 | "num_size (CN n c a) = 3 + num_size a " | |
| 79 | ||
| 80 | (* Semantics of numeral terms (num) *) | |
| 81 | consts Inum :: "real list \<Rightarrow> num \<Rightarrow> real" | |
| 82 | primrec | |
| 83 | "Inum bs (C c) = (real c)" | |
| 84 | "Inum bs (Bound n) = bs!n" | |
| 85 | "Inum bs (CN n c a) = (real c) * (bs!n) + (Inum bs a)" | |
| 86 | "Inum bs (Neg a) = -(Inum bs a)" | |
| 87 | "Inum bs (Add a b) = Inum bs a + Inum bs b" | |
| 88 | "Inum bs (Sub a b) = Inum bs a - Inum bs b" | |
| 89 | "Inum bs (Mul c a) = (real c) * Inum bs a" | |
| 90 | (* FORMULAE *) | |
| 91 | datatype fm = | |
| 92 | T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num| | |
| 93 | NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm | |
| 94 | ||
| 95 | ||
| 96 | (* A size for fm *) | |
| 97 | consts fmsize :: "fm \<Rightarrow> nat" | |
| 98 | recdef fmsize "measure size" | |
| 99 | "fmsize (NOT p) = 1 + fmsize p" | |
| 100 | "fmsize (And p q) = 1 + fmsize p + fmsize q" | |
| 101 | "fmsize (Or p q) = 1 + fmsize p + fmsize q" | |
| 102 | "fmsize (Imp p q) = 3 + fmsize p + fmsize q" | |
| 103 | "fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)" | |
| 104 | "fmsize (E p) = 1 + fmsize p" | |
| 105 | "fmsize (A p) = 4+ fmsize p" | |
| 106 | "fmsize p = 1" | |
| 107 | (* several lemmas about fmsize *) | |
| 108 | lemma fmsize_pos: "fmsize p > 0" | |
| 109 | by (induct p rule: fmsize.induct) simp_all | |
| 110 | ||
| 111 | (* Semantics of formulae (fm) *) | |
| 112 | consts Ifm ::"real list \<Rightarrow> fm \<Rightarrow> bool" | |
| 113 | primrec | |
| 114 | "Ifm bs T = True" | |
| 115 | "Ifm bs F = False" | |
| 116 | "Ifm bs (Lt a) = (Inum bs a < 0)" | |
| 117 | "Ifm bs (Gt a) = (Inum bs a > 0)" | |
| 118 | "Ifm bs (Le a) = (Inum bs a \<le> 0)" | |
| 119 | "Ifm bs (Ge a) = (Inum bs a \<ge> 0)" | |
| 120 | "Ifm bs (Eq a) = (Inum bs a = 0)" | |
| 121 | "Ifm bs (NEq a) = (Inum bs a \<noteq> 0)" | |
| 122 | "Ifm bs (NOT p) = (\<not> (Ifm bs p))" | |
| 123 | "Ifm bs (And p q) = (Ifm bs p \<and> Ifm bs q)" | |
| 124 | "Ifm bs (Or p q) = (Ifm bs p \<or> Ifm bs q)" | |
| 125 | "Ifm bs (Imp p q) = ((Ifm bs p) \<longrightarrow> (Ifm bs q))" | |
| 126 | "Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)" | |
| 127 | "Ifm bs (E p) = (\<exists> x. Ifm (x#bs) p)" | |
| 128 | "Ifm bs (A p) = (\<forall> x. Ifm (x#bs) p)" | |
| 129 | ||
| 130 | lemma IfmLeSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Le (Sub s t)) = (s' \<le> t')" | |
| 131 | apply simp | |
| 132 | done | |
| 133 | ||
| 134 | lemma IfmLtSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Lt (Sub s t)) = (s' < t')" | |
| 135 | apply simp | |
| 136 | done | |
| 137 | lemma IfmEqSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Eq (Sub s t)) = (s' = t')" | |
| 138 | apply simp | |
| 139 | done | |
| 140 | lemma IfmNOT: " (Ifm bs p = P) \<Longrightarrow> (Ifm bs (NOT p) = (\<not>P))" | |
| 141 | apply simp | |
| 142 | done | |
| 143 | lemma IfmAnd: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (And p q) = (P \<and> Q))" | |
| 144 | apply simp | |
| 145 | done | |
| 146 | lemma IfmOr: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Or p q) = (P \<or> Q))" | |
| 147 | apply simp | |
| 148 | done | |
| 149 | lemma IfmImp: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Imp p q) = (P \<longrightarrow> Q))" | |
| 150 | apply simp | |
| 151 | done | |
| 152 | lemma IfmIff: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Iff p q) = (P = Q))" | |
| 153 | apply simp | |
| 154 | done | |
| 155 | ||
| 156 | lemma IfmE: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (E p) = (\<exists>x. P x))" | |
| 157 | apply simp | |
| 158 | done | |
| 159 | lemma IfmA: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (A p) = (\<forall>x. P x))" | |
| 160 | apply simp | |
| 161 | done | |
| 162 | ||
| 163 | consts not:: "fm \<Rightarrow> fm" | |
| 164 | recdef not "measure size" | |
| 165 | "not (NOT p) = p" | |
| 166 | "not T = F" | |
| 167 | "not F = T" | |
| 168 | "not p = NOT p" | |
| 169 | lemma not[simp]: "Ifm bs (not p) = Ifm bs (NOT p)" | |
| 170 | by (cases p) auto | |
| 171 | ||
| 172 | constdefs conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" | |
| 173 | "conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else | |
| 174 | if p = q then p else And p q)" | |
| 175 | lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)" | |
| 176 | by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all) | |
| 177 | ||
| 178 | constdefs disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" | |
| 179 | "disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p | |
| 180 | else if p=q then p else Or p q)" | |
| 181 | ||
| 182 | lemma disj[simp]: "Ifm bs (disj p q) = Ifm bs (Or p q)" | |
| 183 | by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all) | |
| 184 | ||
| 185 | constdefs imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" | |
| 186 | "imp p q \<equiv> (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p | |
| 187 | else Imp p q)" | |
| 188 | lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)" | |
| 189 | by (cases "p=F \<or> q=T",simp_all add: imp_def) | |
| 190 | ||
| 191 | constdefs iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" | |
| 192 | "iff p q \<equiv> (if (p = q) then T else if (p = NOT q \<or> NOT p = q) then F else | |
| 193 | if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else | |
| 194 | Iff p q)" | |
| 195 | lemma iff[simp]: "Ifm bs (iff p q) = Ifm bs (Iff p q)" | |
| 196 | by (unfold iff_def,cases "p=q", simp,cases "p=NOT q", simp) (cases "NOT p= q", auto) | |
| 197 | ||
| 198 | lemma conj_simps: | |
| 199 | "conj F Q = F" | |
| 200 | "conj P F = F" | |
| 201 | "conj T Q = Q" | |
| 202 | "conj P T = P" | |
| 203 | "conj P P = P" | |
| 204 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> conj P Q = And P Q" | |
| 205 | by (simp_all add: conj_def) | |
| 206 | ||
| 207 | lemma disj_simps: | |
| 208 | "disj T Q = T" | |
| 209 | "disj P T = T" | |
| 210 | "disj F Q = Q" | |
| 211 | "disj P F = P" | |
| 212 | "disj P P = P" | |
| 213 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> disj P Q = Or P Q" | |
| 214 | by (simp_all add: disj_def) | |
| 215 | lemma imp_simps: | |
| 216 | "imp F Q = T" | |
| 217 | "imp P T = T" | |
| 218 | "imp T Q = Q" | |
| 219 | "imp P F = not P" | |
| 220 | "imp P P = T" | |
| 221 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> imp P Q = Imp P Q" | |
| 222 | by (simp_all add: imp_def) | |
| 223 | lemma trivNOT: "p \<noteq> NOT p" "NOT p \<noteq> p" | |
| 224 | apply (induct p, auto) | |
| 225 | done | |
| 226 | ||
| 227 | lemma iff_simps: | |
| 228 | "iff p p = T" | |
| 229 | "iff p (NOT p) = F" | |
| 230 | "iff (NOT p) p = F" | |
| 231 | "iff p F = not p" | |
| 232 | "iff F p = not p" | |
| 233 | "p \<noteq> NOT T \<Longrightarrow> iff T p = p" | |
| 234 | "p\<noteq> NOT T \<Longrightarrow> iff p T = p" | |
| 235 | "p\<noteq>q \<Longrightarrow> p\<noteq> NOT q \<Longrightarrow> q\<noteq> NOT p \<Longrightarrow> p\<noteq> F \<Longrightarrow> q\<noteq> F \<Longrightarrow> p \<noteq> T \<Longrightarrow> q \<noteq> T \<Longrightarrow> iff p q = Iff p q" | |
| 236 | using trivNOT | |
| 237 | by (simp_all add: iff_def, cases p, auto) | |
| 238 | (* Quantifier freeness *) | |
| 239 | consts qfree:: "fm \<Rightarrow> bool" | |
| 240 | recdef qfree "measure size" | |
| 241 | "qfree (E p) = False" | |
| 242 | "qfree (A p) = False" | |
| 243 | "qfree (NOT p) = qfree p" | |
| 244 | "qfree (And p q) = (qfree p \<and> qfree q)" | |
| 245 | "qfree (Or p q) = (qfree p \<and> qfree q)" | |
| 246 | "qfree (Imp p q) = (qfree p \<and> qfree q)" | |
| 247 | "qfree (Iff p q) = (qfree p \<and> qfree q)" | |
| 248 | "qfree p = True" | |
| 249 | ||
| 250 | (* Boundedness and substitution *) | |
| 251 | consts | |
| 252 | numbound0:: "num \<Rightarrow> bool" (* a num is INDEPENDENT of Bound 0 *) | |
| 253 | bound0:: "fm \<Rightarrow> bool" (* A Formula is independent of Bound 0 *) | |
| 254 | primrec | |
| 255 | "numbound0 (C c) = True" | |
| 256 | "numbound0 (Bound n) = (n>0)" | |
| 257 | "numbound0 (CN n c a) = (n\<noteq>0 \<and> numbound0 a)" | |
| 258 | "numbound0 (Neg a) = numbound0 a" | |
| 259 | "numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)" | |
| 260 | "numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)" | |
| 261 | "numbound0 (Mul i a) = numbound0 a" | |
| 262 | lemma numbound0_I: | |
| 263 | assumes nb: "numbound0 a" | |
| 264 | shows "Inum (b#bs) a = Inum (b'#bs) a" | |
| 265 | using nb | |
| 266 | by (induct a rule: numbound0.induct,auto simp add: nth_pos2) | |
| 267 | ||
| 268 | primrec | |
| 269 | "bound0 T = True" | |
| 270 | "bound0 F = True" | |
| 271 | "bound0 (Lt a) = numbound0 a" | |
| 272 | "bound0 (Le a) = numbound0 a" | |
| 273 | "bound0 (Gt a) = numbound0 a" | |
| 274 | "bound0 (Ge a) = numbound0 a" | |
| 275 | "bound0 (Eq a) = numbound0 a" | |
| 276 | "bound0 (NEq a) = numbound0 a" | |
| 277 | "bound0 (NOT p) = bound0 p" | |
| 278 | "bound0 (And p q) = (bound0 p \<and> bound0 q)" | |
| 279 | "bound0 (Or p q) = (bound0 p \<and> bound0 q)" | |
| 280 | "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))" | |
| 281 | "bound0 (Iff p q) = (bound0 p \<and> bound0 q)" | |
| 282 | "bound0 (E p) = False" | |
| 283 | "bound0 (A p) = False" | |
| 284 | ||
| 285 | lemma bound0_I: | |
| 286 | assumes bp: "bound0 p" | |
| 287 | shows "Ifm (b#bs) p = Ifm (b'#bs) p" | |
| 288 | using bp numbound0_I[where b="b" and bs="bs" and b'="b'"] | |
| 289 | by (induct p rule: bound0.induct) (auto simp add: nth_pos2) | |
| 290 | ||
| 291 | lemma not_qf[simp]: "qfree p \<Longrightarrow> qfree (not p)" | |
| 292 | by (cases p, auto) | |
| 293 | lemma not_bn[simp]: "bound0 p \<Longrightarrow> bound0 (not p)" | |
| 294 | by (cases p, auto) | |
| 295 | ||
| 296 | ||
| 297 | lemma conj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (conj p q)" | |
| 298 | using conj_def by auto | |
| 299 | lemma conj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)" | |
| 300 | using conj_def by auto | |
| 301 | ||
| 302 | lemma disj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)" | |
| 303 | using disj_def by auto | |
| 304 | lemma disj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)" | |
| 305 | using disj_def by auto | |
| 306 | ||
| 307 | lemma imp_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (imp p q)" | |
| 308 | using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def) | |
| 309 | lemma imp_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)" | |
| 310 | using imp_def by (cases "p=F \<or> q=T \<or> p=q",simp_all add: imp_def) | |
| 311 | ||
| 312 | lemma iff_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)" | |
| 313 | by (unfold iff_def,cases "p=q", auto) | |
| 314 | lemma iff_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (iff p q)" | |
| 315 | using iff_def by (unfold iff_def,cases "p=q", auto) | |
| 316 | ||
| 317 | consts | |
| 318 | decrnum:: "num \<Rightarrow> num" | |
| 319 | decr :: "fm \<Rightarrow> fm" | |
| 320 | ||
| 321 | recdef decrnum "measure size" | |
| 322 | "decrnum (Bound n) = Bound (n - 1)" | |
| 323 | "decrnum (Neg a) = Neg (decrnum a)" | |
| 324 | "decrnum (Add a b) = Add (decrnum a) (decrnum b)" | |
| 325 | "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)" | |
| 326 | "decrnum (Mul c a) = Mul c (decrnum a)" | |
| 327 | "decrnum (CN n c a) = CN (n - 1) c (decrnum a)" | |
| 328 | "decrnum a = a" | |
| 329 | ||
| 330 | recdef decr "measure size" | |
| 331 | "decr (Lt a) = Lt (decrnum a)" | |
| 332 | "decr (Le a) = Le (decrnum a)" | |
| 333 | "decr (Gt a) = Gt (decrnum a)" | |
| 334 | "decr (Ge a) = Ge (decrnum a)" | |
| 335 | "decr (Eq a) = Eq (decrnum a)" | |
| 336 | "decr (NEq a) = NEq (decrnum a)" | |
| 337 | "decr (NOT p) = NOT (decr p)" | |
| 338 | "decr (And p q) = conj (decr p) (decr q)" | |
| 339 | "decr (Or p q) = disj (decr p) (decr q)" | |
| 340 | "decr (Imp p q) = imp (decr p) (decr q)" | |
| 341 | "decr (Iff p q) = iff (decr p) (decr q)" | |
| 342 | "decr p = p" | |
| 343 | ||
| 344 | lemma decrnum: assumes nb: "numbound0 t" | |
| 345 | shows "Inum (x#bs) t = Inum bs (decrnum t)" | |
| 346 | using nb by (induct t rule: decrnum.induct, simp_all add: nth_pos2) | |
| 347 | ||
| 348 | lemma decr: assumes nb: "bound0 p" | |
| 349 | shows "Ifm (x#bs) p = Ifm bs (decr p)" | |
| 350 | using nb | |
| 351 | by (induct p rule: decr.induct, simp_all add: nth_pos2 decrnum) | |
| 352 | ||
| 353 | lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)" | |
| 354 | by (induct p, simp_all) | |
| 355 | ||
| 356 | consts | |
| 357 | isatom :: "fm \<Rightarrow> bool" (* test for atomicity *) | |
| 358 | recdef isatom "measure size" | |
| 359 | "isatom T = True" | |
| 360 | "isatom F = True" | |
| 361 | "isatom (Lt a) = True" | |
| 362 | "isatom (Le a) = True" | |
| 363 | "isatom (Gt a) = True" | |
| 364 | "isatom (Ge a) = True" | |
| 365 | "isatom (Eq a) = True" | |
| 366 | "isatom (NEq a) = True" | |
| 367 | "isatom p = False" | |
| 368 | ||
| 369 | lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p" | |
| 370 | by (induct p, simp_all) | |
| 371 | ||
| 372 | constdefs djf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
 | |
| 373 | "djf f p q \<equiv> (if q=T then T else if q=F then f p else | |
| 374 | (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))" | |
| 375 | constdefs evaldjf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
 | |
| 376 | "evaldjf f ps \<equiv> foldr (djf f) ps F" | |
| 377 | ||
| 378 | lemma djf_Or: "Ifm bs (djf f p q) = Ifm bs (Or (f p) q)" | |
| 379 | by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def) | |
| 380 | (cases "f p", simp_all add: Let_def djf_def) | |
| 381 | ||
| 382 | ||
| 383 | lemma djf_simps: | |
| 384 | "djf f p T = T" | |
| 385 | "djf f p F = f p" | |
| 386 | "q\<noteq>T \<Longrightarrow> q\<noteq>F \<Longrightarrow> djf f p q = (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q)" | |
| 387 | by (simp_all add: djf_def) | |
| 388 | ||
| 389 | lemma evaldjf_ex: "Ifm bs (evaldjf f ps) = (\<exists> p \<in> set ps. Ifm bs (f p))" | |
| 390 | by(induct ps, simp_all add: evaldjf_def djf_Or) | |
| 391 | ||
| 392 | lemma evaldjf_bound0: | |
| 393 | assumes nb: "\<forall> x\<in> set xs. bound0 (f x)" | |
| 394 | shows "bound0 (evaldjf f xs)" | |
| 395 | using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) | |
| 396 | ||
| 397 | lemma evaldjf_qf: | |
| 398 | assumes nb: "\<forall> x\<in> set xs. qfree (f x)" | |
| 399 | shows "qfree (evaldjf f xs)" | |
| 400 | using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) | |
| 401 | ||
| 402 | consts disjuncts :: "fm \<Rightarrow> fm list" | |
| 403 | recdef disjuncts "measure size" | |
| 404 | "disjuncts (Or p q) = (disjuncts p) @ (disjuncts q)" | |
| 405 | "disjuncts F = []" | |
| 406 | "disjuncts p = [p]" | |
| 407 | ||
| 408 | lemma disjuncts: "(\<exists> q\<in> set (disjuncts p). Ifm bs q) = Ifm bs p" | |
| 409 | by(induct p rule: disjuncts.induct, auto) | |
| 410 | ||
| 411 | lemma disjuncts_nb: "bound0 p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). bound0 q" | |
| 412 | proof- | |
| 413 | assume nb: "bound0 p" | |
| 414 | hence "list_all bound0 (disjuncts p)" by (induct p rule:disjuncts.induct,auto) | |
| 415 | thus ?thesis by (simp only: list_all_iff) | |
| 416 | qed | |
| 417 | ||
| 418 | lemma disjuncts_qf: "qfree p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). qfree q" | |
| 419 | proof- | |
| 420 | assume qf: "qfree p" | |
| 421 | hence "list_all qfree (disjuncts p)" | |
| 422 | by (induct p rule: disjuncts.induct, auto) | |
| 423 | thus ?thesis by (simp only: list_all_iff) | |
| 424 | qed | |
| 425 | ||
| 426 | constdefs DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" | |
| 427 | "DJ f p \<equiv> evaldjf f (disjuncts p)" | |
| 428 | ||
| 429 | lemma DJ: assumes fdj: "\<forall> p q. Ifm bs (f (Or p q)) = Ifm bs (Or (f p) (f q))" | |
| 430 | and fF: "f F = F" | |
| 431 | shows "Ifm bs (DJ f p) = Ifm bs (f p)" | |
| 432 | proof- | |
| 433 | have "Ifm bs (DJ f p) = (\<exists> q \<in> set (disjuncts p). Ifm bs (f q))" | |
| 434 | by (simp add: DJ_def evaldjf_ex) | |
| 435 | also have "\<dots> = Ifm bs (f p)" using fdj fF by (induct p rule: disjuncts.induct, auto) | |
| 436 | finally show ?thesis . | |
| 437 | qed | |
| 438 | ||
| 439 | lemma DJ_qf: assumes | |
| 440 | fqf: "\<forall> p. qfree p \<longrightarrow> qfree (f p)" | |
| 441 | shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) " | |
| 442 | proof(clarify) | |
| 443 | fix p assume qf: "qfree p" | |
| 444 | have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def) | |
| 445 | from disjuncts_qf[OF qf] have "\<forall> q\<in> set (disjuncts p). qfree q" . | |
| 446 | with fqf have th':"\<forall> q\<in> set (disjuncts p). qfree (f q)" by blast | |
| 447 | ||
| 448 | from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp | |
| 449 | qed | |
| 450 | ||
| 451 | lemma DJ_qe: assumes qe: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))" | |
| 452 | shows "\<forall> bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bs ((DJ qe p)) = Ifm bs (E p))" | |
| 453 | proof(clarify) | |
| 454 | fix p::fm and bs | |
| 455 | assume qf: "qfree p" | |
| 456 | from qe have qth: "\<forall> p. qfree p \<longrightarrow> qfree (qe p)" by blast | |
| 457 | from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto | |
| 458 | have "Ifm bs (DJ qe p) = (\<exists> q\<in> set (disjuncts p). Ifm bs (qe q))" | |
| 459 | by (simp add: DJ_def evaldjf_ex) | |
| 460 | also have "\<dots> = (\<exists> q \<in> set(disjuncts p). Ifm bs (E q))" using qe disjuncts_qf[OF qf] by auto | |
| 461 | also have "\<dots> = Ifm bs (E p)" by (induct p rule: disjuncts.induct, auto) | |
| 462 | finally show "qfree (DJ qe p) \<and> Ifm bs (DJ qe p) = Ifm bs (E p)" using qfth by blast | |
| 463 | qed | |
| 464 | (* Simplification *) | |
| 465 | consts | |
| 466 | numgcd :: "num \<Rightarrow> int" | |
| 467 | numgcdh:: "num \<Rightarrow> int \<Rightarrow> int" | |
| 468 | reducecoeffh:: "num \<Rightarrow> int \<Rightarrow> num" | |
| 469 | reducecoeff :: "num \<Rightarrow> num" | |
| 470 | dvdnumcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" | |
| 471 | consts maxcoeff:: "num \<Rightarrow> int" | |
| 472 | recdef maxcoeff "measure size" | |
| 473 | "maxcoeff (C i) = abs i" | |
| 474 | "maxcoeff (CN n c t) = max (abs c) (maxcoeff t)" | |
| 475 | "maxcoeff t = 1" | |
| 476 | ||
| 477 | lemma maxcoeff_pos: "maxcoeff t \<ge> 0" | |
| 478 | by (induct t rule: maxcoeff.induct, auto) | |
| 479 | ||
| 480 | recdef numgcdh "measure size" | |
| 481 | "numgcdh (C i) = (\<lambda>g. zgcd i g)" | |
| 482 | "numgcdh (CN n c t) = (\<lambda>g. zgcd c (numgcdh t g))" | |
| 483 | "numgcdh t = (\<lambda>g. 1)" | |
| 484 | defs numgcd_def [code]: "numgcd t \<equiv> numgcdh t (maxcoeff t)" | |
| 485 | ||
| 486 | recdef reducecoeffh "measure size" | |
| 487 | "reducecoeffh (C i) = (\<lambda> g. C (i div g))" | |
| 488 | "reducecoeffh (CN n c t) = (\<lambda> g. CN n (c div g) (reducecoeffh t g))" | |
| 489 | "reducecoeffh t = (\<lambda>g. t)" | |
| 490 | ||
| 491 | defs reducecoeff_def: "reducecoeff t \<equiv> | |
| 492 | (let g = numgcd t in | |
| 493 | if g = 0 then C 0 else if g=1 then t else reducecoeffh t g)" | |
| 494 | ||
| 495 | recdef dvdnumcoeff "measure size" | |
| 496 | "dvdnumcoeff (C i) = (\<lambda> g. g dvd i)" | |
| 497 | "dvdnumcoeff (CN n c t) = (\<lambda> g. g dvd c \<and> (dvdnumcoeff t g))" | |
| 498 | "dvdnumcoeff t = (\<lambda>g. False)" | |
| 499 | ||
| 500 | lemma dvdnumcoeff_trans: | |
| 501 | assumes gdg: "g dvd g'" and dgt':"dvdnumcoeff t g'" | |
| 502 | shows "dvdnumcoeff t g" | |
| 503 | using dgt' gdg | |
| 30042 | 504 | by (induct t rule: dvdnumcoeff.induct, simp_all add: gdg dvd_trans[OF gdg]) | 
| 29789 | 505 | |
| 30042 | 506 | declare dvd_trans [trans add] | 
| 29789 | 507 | |
| 508 | lemma natabs0: "(nat (abs x) = 0) = (x = 0)" | |
| 509 | by arith | |
| 510 | ||
| 511 | lemma numgcd0: | |
| 512 | assumes g0: "numgcd t = 0" | |
| 513 | shows "Inum bs t = 0" | |
| 514 | using g0[simplified numgcd_def] | |
| 515 | by (induct t rule: numgcdh.induct, auto simp add: zgcd_def gcd_zero natabs0 max_def maxcoeff_pos) | |
| 516 | ||
| 517 | lemma numgcdh_pos: assumes gp: "g \<ge> 0" shows "numgcdh t g \<ge> 0" | |
| 518 | using gp | |
| 519 | by (induct t rule: numgcdh.induct, auto simp add: zgcd_def) | |
| 520 | ||
| 521 | lemma numgcd_pos: "numgcd t \<ge>0" | |
| 522 | by (simp add: numgcd_def numgcdh_pos maxcoeff_pos) | |
| 523 | ||
| 524 | lemma reducecoeffh: | |
| 525 | assumes gt: "dvdnumcoeff t g" and gp: "g > 0" | |
| 526 | shows "real g *(Inum bs (reducecoeffh t g)) = Inum bs t" | |
| 527 | using gt | |
| 528 | proof(induct t rule: reducecoeffh.induct) | |
| 529 | case (1 i) hence gd: "g dvd i" by simp | |
| 530 | from gp have gnz: "g \<noteq> 0" by simp | |
| 531 | from prems show ?case by (simp add: real_of_int_div[OF gnz gd]) | |
| 532 | next | |
| 533 | case (2 n c t) hence gd: "g dvd c" by simp | |
| 534 | from gp have gnz: "g \<noteq> 0" by simp | |
| 535 | from prems show ?case by (simp add: real_of_int_div[OF gnz gd] algebra_simps) | |
| 536 | qed (auto simp add: numgcd_def gp) | |
| 537 | consts ismaxcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" | |
| 538 | recdef ismaxcoeff "measure size" | |
| 539 | "ismaxcoeff (C i) = (\<lambda> x. abs i \<le> x)" | |
| 540 | "ismaxcoeff (CN n c t) = (\<lambda>x. abs c \<le> x \<and> (ismaxcoeff t x))" | |
| 541 | "ismaxcoeff t = (\<lambda>x. True)" | |
| 542 | ||
| 543 | lemma ismaxcoeff_mono: "ismaxcoeff t c \<Longrightarrow> c \<le> c' \<Longrightarrow> ismaxcoeff t c'" | |
| 544 | by (induct t rule: ismaxcoeff.induct, auto) | |
| 545 | ||
| 546 | lemma maxcoeff_ismaxcoeff: "ismaxcoeff t (maxcoeff t)" | |
| 547 | proof (induct t rule: maxcoeff.induct) | |
| 548 | case (2 n c t) | |
| 549 | hence H:"ismaxcoeff t (maxcoeff t)" . | |
| 550 | have thh: "maxcoeff t \<le> max (abs c) (maxcoeff t)" by (simp add: le_maxI2) | |
| 551 | from ismaxcoeff_mono[OF H thh] show ?case by (simp add: le_maxI1) | |
| 552 | qed simp_all | |
| 553 | ||
| 554 | lemma zgcd_gt1: "zgcd i j > 1 \<Longrightarrow> ((abs i > 1 \<and> abs j > 1) \<or> (abs i = 0 \<and> abs j > 1) \<or> (abs i > 1 \<and> abs j = 0))" | |
| 555 | apply (cases "abs i = 0", simp_all add: zgcd_def) | |
| 556 | apply (cases "abs j = 0", simp_all) | |
| 557 | apply (cases "abs i = 1", simp_all) | |
| 558 | apply (cases "abs j = 1", simp_all) | |
| 559 | apply auto | |
| 560 | done | |
| 561 | lemma numgcdh0:"numgcdh t m = 0 \<Longrightarrow> m =0" | |
| 562 | by (induct t rule: numgcdh.induct, auto simp add:zgcd0) | |
| 563 | ||
| 564 | lemma dvdnumcoeff_aux: | |
| 565 | assumes "ismaxcoeff t m" and mp:"m \<ge> 0" and "numgcdh t m > 1" | |
| 566 | shows "dvdnumcoeff t (numgcdh t m)" | |
| 567 | using prems | |
| 568 | proof(induct t rule: numgcdh.induct) | |
| 569 | case (2 n c t) | |
| 570 | let ?g = "numgcdh t m" | |
| 571 | from prems have th:"zgcd c ?g > 1" by simp | |
| 572 | from zgcd_gt1[OF th] numgcdh_pos[OF mp, where t="t"] | |
| 573 | have "(abs c > 1 \<and> ?g > 1) \<or> (abs c = 0 \<and> ?g > 1) \<or> (abs c > 1 \<and> ?g = 0)" by simp | |
| 574 |   moreover {assume "abs c > 1" and gp: "?g > 1" with prems
 | |
| 575 | have th: "dvdnumcoeff t ?g" by simp | |
| 576 | have th': "zgcd c ?g dvd ?g" by (simp add:zgcd_zdvd2) | |
| 577 | from dvdnumcoeff_trans[OF th' th] have ?case by (simp add: zgcd_zdvd1)} | |
| 578 |   moreover {assume "abs c = 0 \<and> ?g > 1"
 | |
| 579 | with prems have th: "dvdnumcoeff t ?g" by simp | |
| 580 | have th': "zgcd c ?g dvd ?g" by (simp add:zgcd_zdvd2) | |
| 581 | from dvdnumcoeff_trans[OF th' th] have ?case by (simp add: zgcd_zdvd1) | |
| 582 | hence ?case by simp } | |
| 583 |   moreover {assume "abs c > 1" and g0:"?g = 0" 
 | |
| 584 | from numgcdh0[OF g0] have "m=0". with prems have ?case by simp } | |
| 585 | ultimately show ?case by blast | |
| 586 | qed(auto simp add: zgcd_zdvd1) | |
| 587 | ||
| 588 | lemma dvdnumcoeff_aux2: | |
| 589 | assumes "numgcd t > 1" shows "dvdnumcoeff t (numgcd t) \<and> numgcd t > 0" | |
| 590 | using prems | |
| 591 | proof (simp add: numgcd_def) | |
| 592 | let ?mc = "maxcoeff t" | |
| 593 | let ?g = "numgcdh t ?mc" | |
| 594 | have th1: "ismaxcoeff t ?mc" by (rule maxcoeff_ismaxcoeff) | |
| 595 | have th2: "?mc \<ge> 0" by (rule maxcoeff_pos) | |
| 596 | assume H: "numgcdh t ?mc > 1" | |
| 597 | from dvdnumcoeff_aux[OF th1 th2 H] show "dvdnumcoeff t ?g" . | |
| 598 | qed | |
| 599 | ||
| 600 | lemma reducecoeff: "real (numgcd t) * (Inum bs (reducecoeff t)) = Inum bs t" | |
| 601 | proof- | |
| 602 | let ?g = "numgcd t" | |
| 603 | have "?g \<ge> 0" by (simp add: numgcd_pos) | |
| 604 | hence "?g = 0 \<or> ?g = 1 \<or> ?g > 1" by auto | |
| 605 |   moreover {assume "?g = 0" hence ?thesis by (simp add: numgcd0)} 
 | |
| 606 |   moreover {assume "?g = 1" hence ?thesis by (simp add: reducecoeff_def)} 
 | |
| 607 |   moreover { assume g1:"?g > 1"
 | |
| 608 | from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff t ?g" and g0: "?g > 0" by blast+ | |
| 609 | from reducecoeffh[OF th1 g0, where bs="bs"] g1 have ?thesis | |
| 610 | by (simp add: reducecoeff_def Let_def)} | |
| 611 | ultimately show ?thesis by blast | |
| 612 | qed | |
| 613 | ||
| 614 | lemma reducecoeffh_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeffh t g)" | |
| 615 | by (induct t rule: reducecoeffh.induct, auto) | |
| 616 | ||
| 617 | lemma reducecoeff_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeff t)" | |
| 618 | using reducecoeffh_numbound0 by (simp add: reducecoeff_def Let_def) | |
| 619 | ||
| 620 | consts | |
| 621 | simpnum:: "num \<Rightarrow> num" | |
| 622 | numadd:: "num \<times> num \<Rightarrow> num" | |
| 623 | nummul:: "num \<Rightarrow> int \<Rightarrow> num" | |
| 624 | recdef numadd "measure (\<lambda> (t,s). size t + size s)" | |
| 625 | "numadd (CN n1 c1 r1,CN n2 c2 r2) = | |
| 626 | (if n1=n2 then | |
| 627 | (let c = c1 + c2 | |
| 628 | in (if c=0 then numadd(r1,r2) else CN n1 c (numadd (r1,r2)))) | |
| 629 | else if n1 \<le> n2 then (CN n1 c1 (numadd (r1,CN n2 c2 r2))) | |
| 630 | else (CN n2 c2 (numadd (CN n1 c1 r1,r2))))" | |
| 631 | "numadd (CN n1 c1 r1,t) = CN n1 c1 (numadd (r1, t))" | |
| 632 | "numadd (t,CN n2 c2 r2) = CN n2 c2 (numadd (t,r2))" | |
| 633 | "numadd (C b1, C b2) = C (b1+b2)" | |
| 634 | "numadd (a,b) = Add a b" | |
| 635 | ||
| 636 | lemma numadd[simp]: "Inum bs (numadd (t,s)) = Inum bs (Add t s)" | |
| 637 | apply (induct t s rule: numadd.induct, simp_all add: Let_def) | |
| 638 | apply (case_tac "c1+c2 = 0",case_tac "n1 \<le> n2", simp_all) | |
| 639 | apply (case_tac "n1 = n2", simp_all add: algebra_simps) | |
| 640 | by (simp only: left_distrib[symmetric],simp) | |
| 641 | ||
| 642 | lemma numadd_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numadd (t,s))" | |
| 643 | by (induct t s rule: numadd.induct, auto simp add: Let_def) | |
| 644 | ||
| 645 | recdef nummul "measure size" | |
| 646 | "nummul (C j) = (\<lambda> i. C (i*j))" | |
| 647 | "nummul (CN n c a) = (\<lambda> i. CN n (i*c) (nummul a i))" | |
| 648 | "nummul t = (\<lambda> i. Mul i t)" | |
| 649 | ||
| 650 | lemma nummul[simp]: "\<And> i. Inum bs (nummul t i) = Inum bs (Mul i t)" | |
| 651 | by (induct t rule: nummul.induct, auto simp add: algebra_simps) | |
| 652 | ||
| 653 | lemma nummul_nb[simp]: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)" | |
| 654 | by (induct t rule: nummul.induct, auto ) | |
| 655 | ||
| 656 | constdefs numneg :: "num \<Rightarrow> num" | |
| 657 | "numneg t \<equiv> nummul t (- 1)" | |
| 658 | ||
| 659 | constdefs numsub :: "num \<Rightarrow> num \<Rightarrow> num" | |
| 660 | "numsub s t \<equiv> (if s = t then C 0 else numadd (s,numneg t))" | |
| 661 | ||
| 662 | lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)" | |
| 663 | using numneg_def by simp | |
| 664 | ||
| 665 | lemma numneg_nb[simp]: "numbound0 t \<Longrightarrow> numbound0 (numneg t)" | |
| 666 | using numneg_def by simp | |
| 667 | ||
| 668 | lemma numsub[simp]: "Inum bs (numsub a b) = Inum bs (Sub a b)" | |
| 669 | using numsub_def by simp | |
| 670 | ||
| 671 | lemma numsub_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numsub t s)" | |
| 672 | using numsub_def by simp | |
| 673 | ||
| 674 | recdef simpnum "measure size" | |
| 675 | "simpnum (C j) = C j" | |
| 676 | "simpnum (Bound n) = CN n 1 (C 0)" | |
| 677 | "simpnum (Neg t) = numneg (simpnum t)" | |
| 678 | "simpnum (Add t s) = numadd (simpnum t,simpnum s)" | |
| 679 | "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)" | |
| 680 | "simpnum (Mul i t) = (if i = 0 then (C 0) else nummul (simpnum t) i)" | |
| 681 | "simpnum (CN n c t) = (if c = 0 then simpnum t else numadd (CN n c (C 0),simpnum t))" | |
| 682 | ||
| 683 | lemma simpnum_ci[simp]: "Inum bs (simpnum t) = Inum bs t" | |
| 684 | by (induct t rule: simpnum.induct, auto simp add: numneg numadd numsub nummul) | |
| 685 | ||
| 686 | lemma simpnum_numbound0[simp]: | |
| 687 | "numbound0 t \<Longrightarrow> numbound0 (simpnum t)" | |
| 688 | by (induct t rule: simpnum.induct, auto) | |
| 689 | ||
| 690 | consts nozerocoeff:: "num \<Rightarrow> bool" | |
| 691 | recdef nozerocoeff "measure size" | |
| 692 | "nozerocoeff (C c) = True" | |
| 693 | "nozerocoeff (CN n c t) = (c\<noteq>0 \<and> nozerocoeff t)" | |
| 694 | "nozerocoeff t = True" | |
| 695 | ||
| 696 | lemma numadd_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numadd (a,b))" | |
| 697 | by (induct a b rule: numadd.induct,auto simp add: Let_def) | |
| 698 | ||
| 699 | lemma nummul_nz : "\<And> i. i\<noteq>0 \<Longrightarrow> nozerocoeff a \<Longrightarrow> nozerocoeff (nummul a i)" | |
| 700 | by (induct a rule: nummul.induct,auto simp add: Let_def numadd_nz) | |
| 701 | ||
| 702 | lemma numneg_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff (numneg a)" | |
| 703 | by (simp add: numneg_def nummul_nz) | |
| 704 | ||
| 705 | lemma numsub_nz: "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numsub a b)" | |
| 706 | by (simp add: numsub_def numneg_nz numadd_nz) | |
| 707 | ||
| 708 | lemma simpnum_nz: "nozerocoeff (simpnum t)" | |
| 709 | by(induct t rule: simpnum.induct, auto simp add: numadd_nz numneg_nz numsub_nz nummul_nz) | |
| 710 | ||
| 711 | lemma maxcoeff_nz: "nozerocoeff t \<Longrightarrow> maxcoeff t = 0 \<Longrightarrow> t = C 0" | |
| 712 | proof (induct t rule: maxcoeff.induct) | |
| 713 | case (2 n c t) | |
| 714 | hence cnz: "c \<noteq>0" and mx: "max (abs c) (maxcoeff t) = 0" by simp+ | |
| 715 | have "max (abs c) (maxcoeff t) \<ge> abs c" by (simp add: le_maxI1) | |
| 716 | with cnz have "max (abs c) (maxcoeff t) > 0" by arith | |
| 717 | with prems show ?case by simp | |
| 718 | qed auto | |
| 719 | ||
| 720 | lemma numgcd_nz: assumes nz: "nozerocoeff t" and g0: "numgcd t = 0" shows "t = C 0" | |
| 721 | proof- | |
| 722 | from g0 have th:"numgcdh t (maxcoeff t) = 0" by (simp add: numgcd_def) | |
| 723 | from numgcdh0[OF th] have th:"maxcoeff t = 0" . | |
| 724 | from maxcoeff_nz[OF nz th] show ?thesis . | |
| 725 | qed | |
| 726 | ||
| 727 | constdefs simp_num_pair:: "(num \<times> int) \<Rightarrow> num \<times> int" | |
| 728 | "simp_num_pair \<equiv> (\<lambda> (t,n). (if n = 0 then (C 0, 0) else | |
| 729 | (let t' = simpnum t ; g = numgcd t' in | |
| 730 | if g > 1 then (let g' = zgcd n g in | |
| 731 | if g' = 1 then (t',n) | |
| 732 | else (reducecoeffh t' g', n div g')) | |
| 733 | else (t',n))))" | |
| 734 | ||
| 735 | lemma simp_num_pair_ci: | |
| 736 | shows "((\<lambda> (t,n). Inum bs t / real n) (simp_num_pair (t,n))) = ((\<lambda> (t,n). Inum bs t / real n) (t,n))" | |
| 737 | (is "?lhs = ?rhs") | |
| 738 | proof- | |
| 739 | let ?t' = "simpnum t" | |
| 740 | let ?g = "numgcd ?t'" | |
| 741 | let ?g' = "zgcd n ?g" | |
| 742 |   {assume nz: "n = 0" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
 | |
| 743 | moreover | |
| 744 |   { assume nnz: "n \<noteq> 0"
 | |
| 745 |     {assume "\<not> ?g > 1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci)}
 | |
| 746 | moreover | |
| 747 |     {assume g1:"?g>1" hence g0: "?g > 0" by simp
 | |
| 748 | from zgcd0 g1 nnz have gp0: "?g' \<noteq> 0" by simp | |
| 749 | hence g'p: "?g' > 0" using zgcd_pos[where i="n" and j="numgcd ?t'"] by arith | |
| 750 | hence "?g'= 1 \<or> ?g' > 1" by arith | |
| 751 |       moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci)}
 | |
| 752 |       moreover {assume g'1:"?g'>1"
 | |
| 753 | from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff ?t' ?g" .. | |
| 754 | let ?tt = "reducecoeffh ?t' ?g'" | |
| 755 | let ?t = "Inum bs ?tt" | |
| 756 | have gpdg: "?g' dvd ?g" by (simp add: zgcd_zdvd2) | |
| 757 | have gpdd: "?g' dvd n" by (simp add: zgcd_zdvd1) | |
| 758 | have gpdgp: "?g' dvd ?g'" by simp | |
| 759 | from reducecoeffh[OF dvdnumcoeff_trans[OF gpdg th1] g'p] | |
| 760 | have th2:"real ?g' * ?t = Inum bs ?t'" by simp | |
| 761 | from prems have "?lhs = ?t / real (n div ?g')" by (simp add: simp_num_pair_def Let_def) | |
| 762 | also have "\<dots> = (real ?g' * ?t) / (real ?g' * (real (n div ?g')))" by simp | |
| 763 | also have "\<dots> = (Inum bs ?t' / real n)" | |
| 764 | using real_of_int_div[OF gp0 gpdd] th2 gp0 by simp | |
| 765 | finally have "?lhs = Inum bs t / real n" by (simp add: simpnum_ci) | |
| 766 | then have ?thesis using prems by (simp add: simp_num_pair_def)} | |
| 767 | ultimately have ?thesis by blast} | |
| 768 | ultimately have ?thesis by blast} | |
| 769 | ultimately show ?thesis by blast | |
| 770 | qed | |
| 771 | ||
| 772 | lemma simp_num_pair_l: assumes tnb: "numbound0 t" and np: "n >0" and tn: "simp_num_pair (t,n) = (t',n')" | |
| 773 | shows "numbound0 t' \<and> n' >0" | |
| 774 | proof- | |
| 775 | let ?t' = "simpnum t" | |
| 776 | let ?g = "numgcd ?t'" | |
| 777 | let ?g' = "zgcd n ?g" | |
| 778 |   {assume nz: "n = 0" hence ?thesis using prems by (simp add: Let_def simp_num_pair_def)}
 | |
| 779 | moreover | |
| 780 |   { assume nnz: "n \<noteq> 0"
 | |
| 781 |     {assume "\<not> ?g > 1" hence ?thesis  using prems by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0)}
 | |
| 782 | moreover | |
| 783 |     {assume g1:"?g>1" hence g0: "?g > 0" by simp
 | |
| 784 | from zgcd0 g1 nnz have gp0: "?g' \<noteq> 0" by simp | |
| 785 | hence g'p: "?g' > 0" using zgcd_pos[where i="n" and j="numgcd ?t'"] by arith | |
| 786 | hence "?g'= 1 \<or> ?g' > 1" by arith | |
| 787 |       moreover {assume "?g'=1" hence ?thesis using prems 
 | |
| 788 | by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0)} | |
| 789 |       moreover {assume g'1:"?g'>1"
 | |
| 790 | have gpdg: "?g' dvd ?g" by (simp add: zgcd_zdvd2) | |
| 791 | have gpdd: "?g' dvd n" by (simp add: zgcd_zdvd1) | |
| 792 | have gpdgp: "?g' dvd ?g'" by simp | |
| 793 | from zdvd_imp_le[OF gpdd np] have g'n: "?g' \<le> n" . | |
| 794 | from zdiv_mono1[OF g'n g'p, simplified zdiv_self[OF gp0]] | |
| 795 | have "n div ?g' >0" by simp | |
| 796 | hence ?thesis using prems | |
| 797 | by(auto simp add: simp_num_pair_def Let_def reducecoeffh_numbound0 simpnum_numbound0)} | |
| 798 | ultimately have ?thesis by blast} | |
| 799 | ultimately have ?thesis by blast} | |
| 800 | ultimately show ?thesis by blast | |
| 801 | qed | |
| 802 | ||
| 803 | consts simpfm :: "fm \<Rightarrow> fm" | |
| 804 | recdef simpfm "measure fmsize" | |
| 805 | "simpfm (And p q) = conj (simpfm p) (simpfm q)" | |
| 806 | "simpfm (Or p q) = disj (simpfm p) (simpfm q)" | |
| 807 | "simpfm (Imp p q) = imp (simpfm p) (simpfm q)" | |
| 808 | "simpfm (Iff p q) = iff (simpfm p) (simpfm q)" | |
| 809 | "simpfm (NOT p) = not (simpfm p)" | |
| 810 | "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F | |
| 811 | | _ \<Rightarrow> Lt a')" | |
| 812 | "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0) then T else F | _ \<Rightarrow> Le a')" | |
| 813 | "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0) then T else F | _ \<Rightarrow> Gt a')" | |
| 814 | "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0) then T else F | _ \<Rightarrow> Ge a')" | |
| 815 | "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0) then T else F | _ \<Rightarrow> Eq a')" | |
| 816 | "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0) then T else F | _ \<Rightarrow> NEq a')" | |
| 817 | "simpfm p = p" | |
| 818 | lemma simpfm: "Ifm bs (simpfm p) = Ifm bs p" | |
| 819 | proof(induct p rule: simpfm.induct) | |
| 820 | case (6 a) let ?sa = "simpnum a" from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 821 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 822 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 823 | by (cases ?sa, simp_all add: Let_def)} | |
| 824 | ultimately show ?case by blast | |
| 825 | next | |
| 826 | case (7 a) let ?sa = "simpnum a" | |
| 827 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 828 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 829 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 830 | by (cases ?sa, simp_all add: Let_def)} | |
| 831 | ultimately show ?case by blast | |
| 832 | next | |
| 833 | case (8 a) let ?sa = "simpnum a" | |
| 834 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 835 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 836 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 837 | by (cases ?sa, simp_all add: Let_def)} | |
| 838 | ultimately show ?case by blast | |
| 839 | next | |
| 840 | case (9 a) let ?sa = "simpnum a" | |
| 841 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 842 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 843 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 844 | by (cases ?sa, simp_all add: Let_def)} | |
| 845 | ultimately show ?case by blast | |
| 846 | next | |
| 847 | case (10 a) let ?sa = "simpnum a" | |
| 848 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 849 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 850 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 851 | by (cases ?sa, simp_all add: Let_def)} | |
| 852 | ultimately show ?case by blast | |
| 853 | next | |
| 854 | case (11 a) let ?sa = "simpnum a" | |
| 855 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 856 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 857 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 858 | by (cases ?sa, simp_all add: Let_def)} | |
| 859 | ultimately show ?case by blast | |
| 860 | qed (induct p rule: simpfm.induct, simp_all add: conj disj imp iff not) | |
| 861 | ||
| 862 | ||
| 863 | lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)" | |
| 864 | proof(induct p rule: simpfm.induct) | |
| 865 | case (6 a) hence nb: "numbound0 a" by simp | |
| 866 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 867 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 868 | next | |
| 869 | case (7 a) hence nb: "numbound0 a" by simp | |
| 870 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 871 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 872 | next | |
| 873 | case (8 a) hence nb: "numbound0 a" by simp | |
| 874 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 875 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 876 | next | |
| 877 | case (9 a) hence nb: "numbound0 a" by simp | |
| 878 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 879 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 880 | next | |
| 881 | case (10 a) hence nb: "numbound0 a" by simp | |
| 882 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 883 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 884 | next | |
| 885 | case (11 a) hence nb: "numbound0 a" by simp | |
| 886 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 887 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 888 | qed(auto simp add: disj_def imp_def iff_def conj_def not_bn) | |
| 889 | ||
| 890 | lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)" | |
| 891 | by (induct p rule: simpfm.induct, auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def) | |
| 892 | (case_tac "simpnum a",auto)+ | |
| 893 | ||
| 894 | consts prep :: "fm \<Rightarrow> fm" | |
| 895 | recdef prep "measure fmsize" | |
| 896 | "prep (E T) = T" | |
| 897 | "prep (E F) = F" | |
| 898 | "prep (E (Or p q)) = disj (prep (E p)) (prep (E q))" | |
| 899 | "prep (E (Imp p q)) = disj (prep (E (NOT p))) (prep (E q))" | |
| 900 | "prep (E (Iff p q)) = disj (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))" | |
| 901 | "prep (E (NOT (And p q))) = disj (prep (E (NOT p))) (prep (E(NOT q)))" | |
| 902 | "prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))" | |
| 903 | "prep (E (NOT (Iff p q))) = disj (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))" | |
| 904 | "prep (E p) = E (prep p)" | |
| 905 | "prep (A (And p q)) = conj (prep (A p)) (prep (A q))" | |
| 906 | "prep (A p) = prep (NOT (E (NOT p)))" | |
| 907 | "prep (NOT (NOT p)) = prep p" | |
| 908 | "prep (NOT (And p q)) = disj (prep (NOT p)) (prep (NOT q))" | |
| 909 | "prep (NOT (A p)) = prep (E (NOT p))" | |
| 910 | "prep (NOT (Or p q)) = conj (prep (NOT p)) (prep (NOT q))" | |
| 911 | "prep (NOT (Imp p q)) = conj (prep p) (prep (NOT q))" | |
| 912 | "prep (NOT (Iff p q)) = disj (prep (And p (NOT q))) (prep (And (NOT p) q))" | |
| 913 | "prep (NOT p) = not (prep p)" | |
| 914 | "prep (Or p q) = disj (prep p) (prep q)" | |
| 915 | "prep (And p q) = conj (prep p) (prep q)" | |
| 916 | "prep (Imp p q) = prep (Or (NOT p) q)" | |
| 917 | "prep (Iff p q) = disj (prep (And p q)) (prep (And (NOT p) (NOT q)))" | |
| 918 | "prep p = p" | |
| 919 | (hints simp add: fmsize_pos) | |
| 920 | lemma prep: "\<And> bs. Ifm bs (prep p) = Ifm bs p" | |
| 921 | by (induct p rule: prep.induct, auto) | |
| 922 | ||
| 923 | (* Generic quantifier elimination *) | |
| 924 | consts qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm" | |
| 925 | recdef qelim "measure fmsize" | |
| 926 | "qelim (E p) = (\<lambda> qe. DJ qe (qelim p qe))" | |
| 927 | "qelim (A p) = (\<lambda> qe. not (qe ((qelim (NOT p) qe))))" | |
| 928 | "qelim (NOT p) = (\<lambda> qe. not (qelim p qe))" | |
| 929 | "qelim (And p q) = (\<lambda> qe. conj (qelim p qe) (qelim q qe))" | |
| 930 | "qelim (Or p q) = (\<lambda> qe. disj (qelim p qe) (qelim q qe))" | |
| 931 | "qelim (Imp p q) = (\<lambda> qe. imp (qelim p qe) (qelim q qe))" | |
| 932 | "qelim (Iff p q) = (\<lambda> qe. iff (qelim p qe) (qelim q qe))" | |
| 933 | "qelim p = (\<lambda> y. simpfm p)" | |
| 934 | ||
| 935 | lemma qelim_ci: | |
| 936 | assumes qe_inv: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))" | |
| 937 | shows "\<And> bs. qfree (qelim p qe) \<and> (Ifm bs (qelim p qe) = Ifm bs p)" | |
| 938 | using qe_inv DJ_qe[OF qe_inv] | |
| 939 | by(induct p rule: qelim.induct) | |
| 940 | (auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf | |
| 941 | simpfm simpfm_qf simp del: simpfm.simps) | |
| 942 | ||
| 943 | consts | |
| 944 | plusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of +\<infinity>*) | |
| 945 | minusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of -\<infinity>*) | |
| 946 | recdef minusinf "measure size" | |
| 947 | "minusinf (And p q) = conj (minusinf p) (minusinf q)" | |
| 948 | "minusinf (Or p q) = disj (minusinf p) (minusinf q)" | |
| 949 | "minusinf (Eq (CN 0 c e)) = F" | |
| 950 | "minusinf (NEq (CN 0 c e)) = T" | |
| 951 | "minusinf (Lt (CN 0 c e)) = T" | |
| 952 | "minusinf (Le (CN 0 c e)) = T" | |
| 953 | "minusinf (Gt (CN 0 c e)) = F" | |
| 954 | "minusinf (Ge (CN 0 c e)) = F" | |
| 955 | "minusinf p = p" | |
| 956 | ||
| 957 | recdef plusinf "measure size" | |
| 958 | "plusinf (And p q) = conj (plusinf p) (plusinf q)" | |
| 959 | "plusinf (Or p q) = disj (plusinf p) (plusinf q)" | |
| 960 | "plusinf (Eq (CN 0 c e)) = F" | |
| 961 | "plusinf (NEq (CN 0 c e)) = T" | |
| 962 | "plusinf (Lt (CN 0 c e)) = F" | |
| 963 | "plusinf (Le (CN 0 c e)) = F" | |
| 964 | "plusinf (Gt (CN 0 c e)) = T" | |
| 965 | "plusinf (Ge (CN 0 c e)) = T" | |
| 966 | "plusinf p = p" | |
| 967 | ||
| 968 | consts | |
| 969 | isrlfm :: "fm \<Rightarrow> bool" (* Linearity test for fm *) | |
| 970 | recdef isrlfm "measure size" | |
| 971 | "isrlfm (And p q) = (isrlfm p \<and> isrlfm q)" | |
| 972 | "isrlfm (Or p q) = (isrlfm p \<and> isrlfm q)" | |
| 973 | "isrlfm (Eq (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 974 | "isrlfm (NEq (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 975 | "isrlfm (Lt (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 976 | "isrlfm (Le (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 977 | "isrlfm (Gt (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 978 | "isrlfm (Ge (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 979 | "isrlfm p = (isatom p \<and> (bound0 p))" | |
| 980 | ||
| 981 | (* splits the bounded from the unbounded part*) | |
| 982 | consts rsplit0 :: "num \<Rightarrow> int \<times> num" | |
| 983 | recdef rsplit0 "measure num_size" | |
| 984 | "rsplit0 (Bound 0) = (1,C 0)" | |
| 985 | "rsplit0 (Add a b) = (let (ca,ta) = rsplit0 a ; (cb,tb) = rsplit0 b | |
| 986 | in (ca+cb, Add ta tb))" | |
| 987 | "rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))" | |
| 988 | "rsplit0 (Neg a) = (let (c,t) = rsplit0 a in (-c,Neg t))" | |
| 989 | "rsplit0 (Mul c a) = (let (ca,ta) = rsplit0 a in (c*ca,Mul c ta))" | |
| 990 | "rsplit0 (CN 0 c a) = (let (ca,ta) = rsplit0 a in (c+ca,ta))" | |
| 991 | "rsplit0 (CN n c a) = (let (ca,ta) = rsplit0 a in (ca,CN n c ta))" | |
| 992 | "rsplit0 t = (0,t)" | |
| 993 | lemma rsplit0: | |
| 994 | shows "Inum bs ((split (CN 0)) (rsplit0 t)) = Inum bs t \<and> numbound0 (snd (rsplit0 t))" | |
| 995 | proof (induct t rule: rsplit0.induct) | |
| 996 | case (2 a b) | |
| 997 | let ?sa = "rsplit0 a" let ?sb = "rsplit0 b" | |
| 998 | let ?ca = "fst ?sa" let ?cb = "fst ?sb" | |
| 999 | let ?ta = "snd ?sa" let ?tb = "snd ?sb" | |
| 1000 | from prems have nb: "numbound0 (snd(rsplit0 (Add a b)))" | |
| 1001 | by(cases "rsplit0 a",auto simp add: Let_def split_def) | |
| 1002 | have "Inum bs ((split (CN 0)) (rsplit0 (Add a b))) = | |
| 1003 | Inum bs ((split (CN 0)) ?sa)+Inum bs ((split (CN 0)) ?sb)" | |
| 1004 | by (simp add: Let_def split_def algebra_simps) | |
| 1005 | also have "\<dots> = Inum bs a + Inum bs b" using prems by (cases "rsplit0 a", simp_all) | |
| 1006 | finally show ?case using nb by simp | |
| 1007 | qed(auto simp add: Let_def split_def algebra_simps , simp add: right_distrib[symmetric]) | |
| 1008 | ||
| 1009 | (* Linearize a formula*) | |
| 1010 | definition | |
| 1011 | lt :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 1012 | where | |
| 1013 | "lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t)) | |
| 1014 | else (Gt (CN 0 (-c) (Neg t))))" | |
| 1015 | ||
| 1016 | definition | |
| 1017 | le :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 1018 | where | |
| 1019 | "le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t)) | |
| 1020 | else (Ge (CN 0 (-c) (Neg t))))" | |
| 1021 | ||
| 1022 | definition | |
| 1023 | gt :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 1024 | where | |
| 1025 | "gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t)) | |
| 1026 | else (Lt (CN 0 (-c) (Neg t))))" | |
| 1027 | ||
| 1028 | definition | |
| 1029 | ge :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 1030 | where | |
| 1031 | "ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t)) | |
| 1032 | else (Le (CN 0 (-c) (Neg t))))" | |
| 1033 | ||
| 1034 | definition | |
| 1035 | eq :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 1036 | where | |
| 1037 | "eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t)) | |
| 1038 | else (Eq (CN 0 (-c) (Neg t))))" | |
| 1039 | ||
| 1040 | definition | |
| 1041 | neq :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 1042 | where | |
| 1043 | "neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t)) | |
| 1044 | else (NEq (CN 0 (-c) (Neg t))))" | |
| 1045 | ||
| 1046 | lemma lt: "numnoabs t \<Longrightarrow> Ifm bs (split lt (rsplit0 t)) = Ifm bs (Lt t) \<and> isrlfm (split lt (rsplit0 t))" | |
| 1047 | using rsplit0[where bs = "bs" and t="t"] | |
| 1048 | by (auto simp add: lt_def split_def,cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1049 | ||
| 1050 | lemma le: "numnoabs t \<Longrightarrow> Ifm bs (split le (rsplit0 t)) = Ifm bs (Le t) \<and> isrlfm (split le (rsplit0 t))" | |
| 1051 | using rsplit0[where bs = "bs" and t="t"] | |
| 1052 | by (auto simp add: le_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1053 | ||
| 1054 | lemma gt: "numnoabs t \<Longrightarrow> Ifm bs (split gt (rsplit0 t)) = Ifm bs (Gt t) \<and> isrlfm (split gt (rsplit0 t))" | |
| 1055 | using rsplit0[where bs = "bs" and t="t"] | |
| 1056 | by (auto simp add: gt_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1057 | ||
| 1058 | lemma ge: "numnoabs t \<Longrightarrow> Ifm bs (split ge (rsplit0 t)) = Ifm bs (Ge t) \<and> isrlfm (split ge (rsplit0 t))" | |
| 1059 | using rsplit0[where bs = "bs" and t="t"] | |
| 1060 | by (auto simp add: ge_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1061 | ||
| 1062 | lemma eq: "numnoabs t \<Longrightarrow> Ifm bs (split eq (rsplit0 t)) = Ifm bs (Eq t) \<and> isrlfm (split eq (rsplit0 t))" | |
| 1063 | using rsplit0[where bs = "bs" and t="t"] | |
| 1064 | by (auto simp add: eq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1065 | ||
| 1066 | lemma neq: "numnoabs t \<Longrightarrow> Ifm bs (split neq (rsplit0 t)) = Ifm bs (NEq t) \<and> isrlfm (split neq (rsplit0 t))" | |
| 1067 | using rsplit0[where bs = "bs" and t="t"] | |
| 1068 | by (auto simp add: neq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1069 | ||
| 1070 | lemma conj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (conj p q)" | |
| 1071 | by (auto simp add: conj_def) | |
| 1072 | lemma disj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (disj p q)" | |
| 1073 | by (auto simp add: disj_def) | |
| 1074 | ||
| 1075 | consts rlfm :: "fm \<Rightarrow> fm" | |
| 1076 | recdef rlfm "measure fmsize" | |
| 1077 | "rlfm (And p q) = conj (rlfm p) (rlfm q)" | |
| 1078 | "rlfm (Or p q) = disj (rlfm p) (rlfm q)" | |
| 1079 | "rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)" | |
| 1080 | "rlfm (Iff p q) = disj (conj (rlfm p) (rlfm q)) (conj (rlfm (NOT p)) (rlfm (NOT q)))" | |
| 1081 | "rlfm (Lt a) = split lt (rsplit0 a)" | |
| 1082 | "rlfm (Le a) = split le (rsplit0 a)" | |
| 1083 | "rlfm (Gt a) = split gt (rsplit0 a)" | |
| 1084 | "rlfm (Ge a) = split ge (rsplit0 a)" | |
| 1085 | "rlfm (Eq a) = split eq (rsplit0 a)" | |
| 1086 | "rlfm (NEq a) = split neq (rsplit0 a)" | |
| 1087 | "rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))" | |
| 1088 | "rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))" | |
| 1089 | "rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))" | |
| 1090 | "rlfm (NOT (Iff p q)) = disj (conj(rlfm p) (rlfm(NOT q))) (conj(rlfm(NOT p)) (rlfm q))" | |
| 1091 | "rlfm (NOT (NOT p)) = rlfm p" | |
| 1092 | "rlfm (NOT T) = F" | |
| 1093 | "rlfm (NOT F) = T" | |
| 1094 | "rlfm (NOT (Lt a)) = rlfm (Ge a)" | |
| 1095 | "rlfm (NOT (Le a)) = rlfm (Gt a)" | |
| 1096 | "rlfm (NOT (Gt a)) = rlfm (Le a)" | |
| 1097 | "rlfm (NOT (Ge a)) = rlfm (Lt a)" | |
| 1098 | "rlfm (NOT (Eq a)) = rlfm (NEq a)" | |
| 1099 | "rlfm (NOT (NEq a)) = rlfm (Eq a)" | |
| 1100 | "rlfm p = p" (hints simp add: fmsize_pos) | |
| 1101 | ||
| 1102 | lemma rlfm_I: | |
| 1103 | assumes qfp: "qfree p" | |
| 1104 | shows "(Ifm bs (rlfm p) = Ifm bs p) \<and> isrlfm (rlfm p)" | |
| 1105 | using qfp | |
| 1106 | by (induct p rule: rlfm.induct, auto simp add: lt le gt ge eq neq conj disj conj_lin disj_lin) | |
| 1107 | ||
| 1108 | (* Operations needed for Ferrante and Rackoff *) | |
| 1109 | lemma rminusinf_inf: | |
| 1110 | assumes lp: "isrlfm p" | |
| 1111 | shows "\<exists> z. \<forall> x < z. Ifm (x#bs) (minusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p") | |
| 1112 | using lp | |
| 1113 | proof (induct p rule: minusinf.induct) | |
| 1114 | case (1 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto | |
| 1115 | next | |
| 1116 | case (2 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto | |
| 1117 | next | |
| 1118 | case (3 c e) | |
| 1119 | from prems have nb: "numbound0 e" by simp | |
| 1120 | from prems have cp: "real c > 0" by simp | |
| 1121 | fix a | |
| 1122 | let ?e="Inum (a#bs) e" | |
| 1123 | let ?z = "(- ?e) / real c" | |
| 1124 |   {fix x
 | |
| 1125 | assume xz: "x < ?z" | |
| 1126 | hence "(real c * x < - ?e)" | |
| 1127 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1128 | hence "real c * x + ?e < 0" by arith | |
| 1129 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1130 | with xz have "?P ?z x (Eq (CN 0 c e))" | |
| 1131 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1132 | hence "\<forall> x < ?z. ?P ?z x (Eq (CN 0 c e))" by simp | |
| 1133 | thus ?case by blast | |
| 1134 | next | |
| 1135 | case (4 c e) | |
| 1136 | from prems have nb: "numbound0 e" by simp | |
| 1137 | from prems have cp: "real c > 0" by simp | |
| 1138 | fix a | |
| 1139 | let ?e="Inum (a#bs) e" | |
| 1140 | let ?z = "(- ?e) / real c" | |
| 1141 |   {fix x
 | |
| 1142 | assume xz: "x < ?z" | |
| 1143 | hence "(real c * x < - ?e)" | |
| 1144 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1145 | hence "real c * x + ?e < 0" by arith | |
| 1146 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1147 | with xz have "?P ?z x (NEq (CN 0 c e))" | |
| 1148 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1149 | hence "\<forall> x < ?z. ?P ?z x (NEq (CN 0 c e))" by simp | |
| 1150 | thus ?case by blast | |
| 1151 | next | |
| 1152 | case (5 c e) | |
| 1153 | from prems have nb: "numbound0 e" by simp | |
| 1154 | from prems have cp: "real c > 0" by simp | |
| 1155 | fix a | |
| 1156 | let ?e="Inum (a#bs) e" | |
| 1157 | let ?z = "(- ?e) / real c" | |
| 1158 |   {fix x
 | |
| 1159 | assume xz: "x < ?z" | |
| 1160 | hence "(real c * x < - ?e)" | |
| 1161 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1162 | hence "real c * x + ?e < 0" by arith | |
| 1163 | with xz have "?P ?z x (Lt (CN 0 c e))" | |
| 1164 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1165 | hence "\<forall> x < ?z. ?P ?z x (Lt (CN 0 c e))" by simp | |
| 1166 | thus ?case by blast | |
| 1167 | next | |
| 1168 | case (6 c e) | |
| 1169 | from prems have nb: "numbound0 e" by simp | |
| 1170 | from prems have cp: "real c > 0" by simp | |
| 1171 | fix a | |
| 1172 | let ?e="Inum (a#bs) e" | |
| 1173 | let ?z = "(- ?e) / real c" | |
| 1174 |   {fix x
 | |
| 1175 | assume xz: "x < ?z" | |
| 1176 | hence "(real c * x < - ?e)" | |
| 1177 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1178 | hence "real c * x + ?e < 0" by arith | |
| 1179 | with xz have "?P ?z x (Le (CN 0 c e))" | |
| 1180 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1181 | hence "\<forall> x < ?z. ?P ?z x (Le (CN 0 c e))" by simp | |
| 1182 | thus ?case by blast | |
| 1183 | next | |
| 1184 | case (7 c e) | |
| 1185 | from prems have nb: "numbound0 e" by simp | |
| 1186 | from prems have cp: "real c > 0" by simp | |
| 1187 | fix a | |
| 1188 | let ?e="Inum (a#bs) e" | |
| 1189 | let ?z = "(- ?e) / real c" | |
| 1190 |   {fix x
 | |
| 1191 | assume xz: "x < ?z" | |
| 1192 | hence "(real c * x < - ?e)" | |
| 1193 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1194 | hence "real c * x + ?e < 0" by arith | |
| 1195 | with xz have "?P ?z x (Gt (CN 0 c e))" | |
| 1196 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1197 | hence "\<forall> x < ?z. ?P ?z x (Gt (CN 0 c e))" by simp | |
| 1198 | thus ?case by blast | |
| 1199 | next | |
| 1200 | case (8 c e) | |
| 1201 | from prems have nb: "numbound0 e" by simp | |
| 1202 | from prems have cp: "real c > 0" by simp | |
| 1203 | fix a | |
| 1204 | let ?e="Inum (a#bs) e" | |
| 1205 | let ?z = "(- ?e) / real c" | |
| 1206 |   {fix x
 | |
| 1207 | assume xz: "x < ?z" | |
| 1208 | hence "(real c * x < - ?e)" | |
| 1209 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1210 | hence "real c * x + ?e < 0" by arith | |
| 1211 | with xz have "?P ?z x (Ge (CN 0 c e))" | |
| 1212 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1213 | hence "\<forall> x < ?z. ?P ?z x (Ge (CN 0 c e))" by simp | |
| 1214 | thus ?case by blast | |
| 1215 | qed simp_all | |
| 1216 | ||
| 1217 | lemma rplusinf_inf: | |
| 1218 | assumes lp: "isrlfm p" | |
| 1219 | shows "\<exists> z. \<forall> x > z. Ifm (x#bs) (plusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p") | |
| 1220 | using lp | |
| 1221 | proof (induct p rule: isrlfm.induct) | |
| 1222 | case (1 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto | |
| 1223 | next | |
| 1224 | case (2 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto | |
| 1225 | next | |
| 1226 | case (3 c e) | |
| 1227 | from prems have nb: "numbound0 e" by simp | |
| 1228 | from prems have cp: "real c > 0" by simp | |
| 1229 | fix a | |
| 1230 | let ?e="Inum (a#bs) e" | |
| 1231 | let ?z = "(- ?e) / real c" | |
| 1232 |   {fix x
 | |
| 1233 | assume xz: "x > ?z" | |
| 1234 | with mult_strict_right_mono [OF xz cp] cp | |
| 1235 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1236 | hence "real c * x + ?e > 0" by arith | |
| 1237 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1238 | with xz have "?P ?z x (Eq (CN 0 c e))" | |
| 1239 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1240 | hence "\<forall> x > ?z. ?P ?z x (Eq (CN 0 c e))" by simp | |
| 1241 | thus ?case by blast | |
| 1242 | next | |
| 1243 | case (4 c e) | |
| 1244 | from prems have nb: "numbound0 e" by simp | |
| 1245 | from prems have cp: "real c > 0" by simp | |
| 1246 | fix a | |
| 1247 | let ?e="Inum (a#bs) e" | |
| 1248 | let ?z = "(- ?e) / real c" | |
| 1249 |   {fix x
 | |
| 1250 | assume xz: "x > ?z" | |
| 1251 | with mult_strict_right_mono [OF xz cp] cp | |
| 1252 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1253 | hence "real c * x + ?e > 0" by arith | |
| 1254 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1255 | with xz have "?P ?z x (NEq (CN 0 c e))" | |
| 1256 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1257 | hence "\<forall> x > ?z. ?P ?z x (NEq (CN 0 c e))" by simp | |
| 1258 | thus ?case by blast | |
| 1259 | next | |
| 1260 | case (5 c e) | |
| 1261 | from prems have nb: "numbound0 e" by simp | |
| 1262 | from prems have cp: "real c > 0" by simp | |
| 1263 | fix a | |
| 1264 | let ?e="Inum (a#bs) e" | |
| 1265 | let ?z = "(- ?e) / real c" | |
| 1266 |   {fix x
 | |
| 1267 | assume xz: "x > ?z" | |
| 1268 | with mult_strict_right_mono [OF xz cp] cp | |
| 1269 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1270 | hence "real c * x + ?e > 0" by arith | |
| 1271 | with xz have "?P ?z x (Lt (CN 0 c e))" | |
| 1272 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1273 | hence "\<forall> x > ?z. ?P ?z x (Lt (CN 0 c e))" by simp | |
| 1274 | thus ?case by blast | |
| 1275 | next | |
| 1276 | case (6 c e) | |
| 1277 | from prems have nb: "numbound0 e" by simp | |
| 1278 | from prems have cp: "real c > 0" by simp | |
| 1279 | fix a | |
| 1280 | let ?e="Inum (a#bs) e" | |
| 1281 | let ?z = "(- ?e) / real c" | |
| 1282 |   {fix x
 | |
| 1283 | assume xz: "x > ?z" | |
| 1284 | with mult_strict_right_mono [OF xz cp] cp | |
| 1285 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1286 | hence "real c * x + ?e > 0" by arith | |
| 1287 | with xz have "?P ?z x (Le (CN 0 c e))" | |
| 1288 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1289 | hence "\<forall> x > ?z. ?P ?z x (Le (CN 0 c e))" by simp | |
| 1290 | thus ?case by blast | |
| 1291 | next | |
| 1292 | case (7 c e) | |
| 1293 | from prems have nb: "numbound0 e" by simp | |
| 1294 | from prems have cp: "real c > 0" by simp | |
| 1295 | fix a | |
| 1296 | let ?e="Inum (a#bs) e" | |
| 1297 | let ?z = "(- ?e) / real c" | |
| 1298 |   {fix x
 | |
| 1299 | assume xz: "x > ?z" | |
| 1300 | with mult_strict_right_mono [OF xz cp] cp | |
| 1301 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1302 | hence "real c * x + ?e > 0" by arith | |
| 1303 | with xz have "?P ?z x (Gt (CN 0 c e))" | |
| 1304 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1305 | hence "\<forall> x > ?z. ?P ?z x (Gt (CN 0 c e))" by simp | |
| 1306 | thus ?case by blast | |
| 1307 | next | |
| 1308 | case (8 c e) | |
| 1309 | from prems have nb: "numbound0 e" by simp | |
| 1310 | from prems have cp: "real c > 0" by simp | |
| 1311 | fix a | |
| 1312 | let ?e="Inum (a#bs) e" | |
| 1313 | let ?z = "(- ?e) / real c" | |
| 1314 |   {fix x
 | |
| 1315 | assume xz: "x > ?z" | |
| 1316 | with mult_strict_right_mono [OF xz cp] cp | |
| 1317 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1318 | hence "real c * x + ?e > 0" by arith | |
| 1319 | with xz have "?P ?z x (Ge (CN 0 c e))" | |
| 1320 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1321 | hence "\<forall> x > ?z. ?P ?z x (Ge (CN 0 c e))" by simp | |
| 1322 | thus ?case by blast | |
| 1323 | qed simp_all | |
| 1324 | ||
| 1325 | lemma rminusinf_bound0: | |
| 1326 | assumes lp: "isrlfm p" | |
| 1327 | shows "bound0 (minusinf p)" | |
| 1328 | using lp | |
| 1329 | by (induct p rule: minusinf.induct) simp_all | |
| 1330 | ||
| 1331 | lemma rplusinf_bound0: | |
| 1332 | assumes lp: "isrlfm p" | |
| 1333 | shows "bound0 (plusinf p)" | |
| 1334 | using lp | |
| 1335 | by (induct p rule: plusinf.induct) simp_all | |
| 1336 | ||
| 1337 | lemma rminusinf_ex: | |
| 1338 | assumes lp: "isrlfm p" | |
| 1339 | and ex: "Ifm (a#bs) (minusinf p)" | |
| 1340 | shows "\<exists> x. Ifm (x#bs) p" | |
| 1341 | proof- | |
| 1342 | from bound0_I [OF rminusinf_bound0[OF lp], where b="a" and bs ="bs"] ex | |
| 1343 | have th: "\<forall> x. Ifm (x#bs) (minusinf p)" by auto | |
| 1344 | from rminusinf_inf[OF lp, where bs="bs"] | |
| 1345 | obtain z where z_def: "\<forall>x<z. Ifm (x # bs) (minusinf p) = Ifm (x # bs) p" by blast | |
| 1346 | from th have "Ifm ((z - 1)#bs) (minusinf p)" by simp | |
| 1347 | moreover have "z - 1 < z" by simp | |
| 1348 | ultimately show ?thesis using z_def by auto | |
| 1349 | qed | |
| 1350 | ||
| 1351 | lemma rplusinf_ex: | |
| 1352 | assumes lp: "isrlfm p" | |
| 1353 | and ex: "Ifm (a#bs) (plusinf p)" | |
| 1354 | shows "\<exists> x. Ifm (x#bs) p" | |
| 1355 | proof- | |
| 1356 | from bound0_I [OF rplusinf_bound0[OF lp], where b="a" and bs ="bs"] ex | |
| 1357 | have th: "\<forall> x. Ifm (x#bs) (plusinf p)" by auto | |
| 1358 | from rplusinf_inf[OF lp, where bs="bs"] | |
| 1359 | obtain z where z_def: "\<forall>x>z. Ifm (x # bs) (plusinf p) = Ifm (x # bs) p" by blast | |
| 1360 | from th have "Ifm ((z + 1)#bs) (plusinf p)" by simp | |
| 1361 | moreover have "z + 1 > z" by simp | |
| 1362 | ultimately show ?thesis using z_def by auto | |
| 1363 | qed | |
| 1364 | ||
| 1365 | consts | |
| 1366 | uset:: "fm \<Rightarrow> (num \<times> int) list" | |
| 1367 | usubst :: "fm \<Rightarrow> (num \<times> int) \<Rightarrow> fm " | |
| 1368 | recdef uset "measure size" | |
| 1369 | "uset (And p q) = (uset p @ uset q)" | |
| 1370 | "uset (Or p q) = (uset p @ uset q)" | |
| 1371 | "uset (Eq (CN 0 c e)) = [(Neg e,c)]" | |
| 1372 | "uset (NEq (CN 0 c e)) = [(Neg e,c)]" | |
| 1373 | "uset (Lt (CN 0 c e)) = [(Neg e,c)]" | |
| 1374 | "uset (Le (CN 0 c e)) = [(Neg e,c)]" | |
| 1375 | "uset (Gt (CN 0 c e)) = [(Neg e,c)]" | |
| 1376 | "uset (Ge (CN 0 c e)) = [(Neg e,c)]" | |
| 1377 | "uset p = []" | |
| 1378 | recdef usubst "measure size" | |
| 1379 | "usubst (And p q) = (\<lambda> (t,n). And (usubst p (t,n)) (usubst q (t,n)))" | |
| 1380 | "usubst (Or p q) = (\<lambda> (t,n). Or (usubst p (t,n)) (usubst q (t,n)))" | |
| 1381 | "usubst (Eq (CN 0 c e)) = (\<lambda> (t,n). Eq (Add (Mul c t) (Mul n e)))" | |
| 1382 | "usubst (NEq (CN 0 c e)) = (\<lambda> (t,n). NEq (Add (Mul c t) (Mul n e)))" | |
| 1383 | "usubst (Lt (CN 0 c e)) = (\<lambda> (t,n). Lt (Add (Mul c t) (Mul n e)))" | |
| 1384 | "usubst (Le (CN 0 c e)) = (\<lambda> (t,n). Le (Add (Mul c t) (Mul n e)))" | |
| 1385 | "usubst (Gt (CN 0 c e)) = (\<lambda> (t,n). Gt (Add (Mul c t) (Mul n e)))" | |
| 1386 | "usubst (Ge (CN 0 c e)) = (\<lambda> (t,n). Ge (Add (Mul c t) (Mul n e)))" | |
| 1387 | "usubst p = (\<lambda> (t,n). p)" | |
| 1388 | ||
| 1389 | lemma usubst_I: assumes lp: "isrlfm p" | |
| 1390 | and np: "real n > 0" and nbt: "numbound0 t" | |
| 1391 | shows "(Ifm (x#bs) (usubst p (t,n)) = Ifm (((Inum (x#bs) t)/(real n))#bs) p) \<and> bound0 (usubst p (t,n))" (is "(?I x (usubst p (t,n)) = ?I ?u p) \<and> ?B p" is "(_ = ?I (?t/?n) p) \<and> _" is "(_ = ?I (?N x t /_) p) \<and> _") | |
| 1392 | using lp | |
| 1393 | proof(induct p rule: usubst.induct) | |
| 1394 | case (5 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+ | |
| 1395 | have "?I ?u (Lt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) < 0)" | |
| 1396 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1397 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) < 0)" | |
| 1398 | by (simp only: pos_less_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1399 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1400 | also have "\<dots> = (real c *?t + ?n* (?N x e) < 0)" | |
| 1401 | using np by simp | |
| 1402 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1403 | next | |
| 1404 | case (6 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+ | |
| 1405 | have "?I ?u (Le (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<le> 0)" | |
| 1406 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1407 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<le> 0)" | |
| 1408 | by (simp only: pos_le_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1409 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1410 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<le> 0)" | |
| 1411 | using np by simp | |
| 1412 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1413 | next | |
| 1414 | case (7 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+ | |
| 1415 | have "?I ?u (Gt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) > 0)" | |
| 1416 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1417 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) > 0)" | |
| 1418 | by (simp only: pos_divide_less_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1419 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1420 | also have "\<dots> = (real c *?t + ?n* (?N x e) > 0)" | |
| 1421 | using np by simp | |
| 1422 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1423 | next | |
| 1424 | case (8 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+ | |
| 1425 | have "?I ?u (Ge (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<ge> 0)" | |
| 1426 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1427 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<ge> 0)" | |
| 1428 | by (simp only: pos_divide_le_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1429 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1430 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<ge> 0)" | |
| 1431 | using np by simp | |
| 1432 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1433 | next | |
| 1434 | case (3 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+ | |
| 1435 | from np have np: "real n \<noteq> 0" by simp | |
| 1436 | have "?I ?u (Eq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) = 0)" | |
| 1437 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1438 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) = 0)" | |
| 1439 | by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1440 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1441 | also have "\<dots> = (real c *?t + ?n* (?N x e) = 0)" | |
| 1442 | using np by simp | |
| 1443 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1444 | next | |
| 1445 | case (4 c e) from prems have cp: "c >0" and nb: "numbound0 e" by simp+ | |
| 1446 | from np have np: "real n \<noteq> 0" by simp | |
| 1447 | have "?I ?u (NEq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<noteq> 0)" | |
| 1448 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1449 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<noteq> 0)" | |
| 1450 | by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1451 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1452 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<noteq> 0)" | |
| 1453 | using np by simp | |
| 1454 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1455 | qed(simp_all add: nbt numbound0_I[where bs ="bs" and b="(Inum (x#bs) t)/ real n" and b'="x"] nth_pos2) | |
| 1456 | ||
| 1457 | lemma uset_l: | |
| 1458 | assumes lp: "isrlfm p" | |
| 1459 | shows "\<forall> (t,k) \<in> set (uset p). numbound0 t \<and> k >0" | |
| 1460 | using lp | |
| 1461 | by(induct p rule: uset.induct,auto) | |
| 1462 | ||
| 1463 | lemma rminusinf_uset: | |
| 1464 | assumes lp: "isrlfm p" | |
| 1465 | and nmi: "\<not> (Ifm (a#bs) (minusinf p))" (is "\<not> (Ifm (a#bs) (?M p))") | |
| 1466 | and ex: "Ifm (x#bs) p" (is "?I x p") | |
| 1467 | shows "\<exists> (s,m) \<in> set (uset p). x \<ge> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<ge> ?N a s / real m") | |
| 1468 | proof- | |
| 1469 | have "\<exists> (s,m) \<in> set (uset p). real m * x \<ge> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<ge> ?N a s") | |
| 1470 | using lp nmi ex | |
| 1471 | by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"] nth_pos2) | |
| 1472 | then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<ge> ?N a s" by blast | |
| 1473 | from uset_l[OF lp] smU have mp: "real m > 0" by auto | |
| 1474 | from pos_divide_le_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<ge> ?N a s / real m" | |
| 1475 | by (auto simp add: mult_commute) | |
| 1476 | thus ?thesis using smU by auto | |
| 1477 | qed | |
| 1478 | ||
| 1479 | lemma rplusinf_uset: | |
| 1480 | assumes lp: "isrlfm p" | |
| 1481 | and nmi: "\<not> (Ifm (a#bs) (plusinf p))" (is "\<not> (Ifm (a#bs) (?M p))") | |
| 1482 | and ex: "Ifm (x#bs) p" (is "?I x p") | |
| 1483 | shows "\<exists> (s,m) \<in> set (uset p). x \<le> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<le> ?N a s / real m") | |
| 1484 | proof- | |
| 1485 | have "\<exists> (s,m) \<in> set (uset p). real m * x \<le> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<le> ?N a s") | |
| 1486 | using lp nmi ex | |
| 1487 | by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"] nth_pos2) | |
| 1488 | then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<le> ?N a s" by blast | |
| 1489 | from uset_l[OF lp] smU have mp: "real m > 0" by auto | |
| 1490 | from pos_le_divide_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<le> ?N a s / real m" | |
| 1491 | by (auto simp add: mult_commute) | |
| 1492 | thus ?thesis using smU by auto | |
| 1493 | qed | |
| 1494 | ||
| 1495 | lemma lin_dense: | |
| 1496 | assumes lp: "isrlfm p" | |
| 1497 | and noS: "\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> (\<lambda> (t,n). Inum (x#bs) t / real n) ` set (uset p)" | |
| 1498 | (is "\<forall> t. _ \<and> _ \<longrightarrow> t \<notin> (\<lambda> (t,n). ?N x t / real n ) ` (?U p)") | |
| 1499 | and lx: "l < x" and xu:"x < u" and px:" Ifm (x#bs) p" | |
| 1500 | and ly: "l < y" and yu: "y < u" | |
| 1501 | shows "Ifm (y#bs) p" | |
| 1502 | using lp px noS | |
| 1503 | proof (induct p rule: isrlfm.induct) | |
| 1504 | case (5 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 1505 | from prems have "x * real c + ?N x e < 0" by (simp add: algebra_simps) | |
| 1506 | hence pxc: "x < (- ?N x e) / real c" | |
| 1507 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1508 | from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1509 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1510 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1511 |     moreover {assume y: "y < (-?N x e)/ real c"
 | |
| 1512 | hence "y * real c < - ?N x e" | |
| 1513 | by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1514 | hence "real c * y + ?N x e < 0" by (simp add: algebra_simps) | |
| 1515 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1516 |     moreover {assume y: "y > (- ?N x e) / real c" 
 | |
| 1517 | with yu have eu: "u > (- ?N x e) / real c" by auto | |
| 1518 | with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto) | |
| 1519 | with lx pxc have "False" by auto | |
| 1520 | hence ?case by simp } | |
| 1521 | ultimately show ?case by blast | |
| 1522 | next | |
| 1523 | case (6 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp + | |
| 1524 | from prems have "x * real c + ?N x e \<le> 0" by (simp add: algebra_simps) | |
| 1525 | hence pxc: "x \<le> (- ?N x e) / real c" | |
| 1526 | by (simp only: pos_le_divide_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1527 | from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1528 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1529 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1530 |     moreover {assume y: "y < (-?N x e)/ real c"
 | |
| 1531 | hence "y * real c < - ?N x e" | |
| 1532 | by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1533 | hence "real c * y + ?N x e < 0" by (simp add: algebra_simps) | |
| 1534 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1535 |     moreover {assume y: "y > (- ?N x e) / real c" 
 | |
| 1536 | with yu have eu: "u > (- ?N x e) / real c" by auto | |
| 1537 | with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto) | |
| 1538 | with lx pxc have "False" by auto | |
| 1539 | hence ?case by simp } | |
| 1540 | ultimately show ?case by blast | |
| 1541 | next | |
| 1542 | case (7 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 1543 | from prems have "x * real c + ?N x e > 0" by (simp add: algebra_simps) | |
| 1544 | hence pxc: "x > (- ?N x e) / real c" | |
| 1545 | by (simp only: pos_divide_less_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1546 | from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1547 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1548 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1549 |     moreover {assume y: "y > (-?N x e)/ real c"
 | |
| 1550 | hence "y * real c > - ?N x e" | |
| 1551 | by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1552 | hence "real c * y + ?N x e > 0" by (simp add: algebra_simps) | |
| 1553 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1554 |     moreover {assume y: "y < (- ?N x e) / real c" 
 | |
| 1555 | with ly have eu: "l < (- ?N x e) / real c" by auto | |
| 1556 | with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto) | |
| 1557 | with xu pxc have "False" by auto | |
| 1558 | hence ?case by simp } | |
| 1559 | ultimately show ?case by blast | |
| 1560 | next | |
| 1561 | case (8 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 1562 | from prems have "x * real c + ?N x e \<ge> 0" by (simp add: algebra_simps) | |
| 1563 | hence pxc: "x \<ge> (- ?N x e) / real c" | |
| 1564 | by (simp only: pos_divide_le_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1565 | from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1566 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1567 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1568 |     moreover {assume y: "y > (-?N x e)/ real c"
 | |
| 1569 | hence "y * real c > - ?N x e" | |
| 1570 | by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1571 | hence "real c * y + ?N x e > 0" by (simp add: algebra_simps) | |
| 1572 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1573 |     moreover {assume y: "y < (- ?N x e) / real c" 
 | |
| 1574 | with ly have eu: "l < (- ?N x e) / real c" by auto | |
| 1575 | with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto) | |
| 1576 | with xu pxc have "False" by auto | |
| 1577 | hence ?case by simp } | |
| 1578 | ultimately show ?case by blast | |
| 1579 | next | |
| 1580 | case (3 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 1581 | from cp have cnz: "real c \<noteq> 0" by simp | |
| 1582 | from prems have "x * real c + ?N x e = 0" by (simp add: algebra_simps) | |
| 1583 | hence pxc: "x = (- ?N x e) / real c" | |
| 1584 | by (simp only: nonzero_eq_divide_eq[OF cnz, where a="x" and b="-?N x e"]) | |
| 1585 | from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1586 | with lx xu have yne: "x \<noteq> - ?N x e / real c" by auto | |
| 1587 | with pxc show ?case by simp | |
| 1588 | next | |
| 1589 | case (4 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 1590 | from cp have cnz: "real c \<noteq> 0" by simp | |
| 1591 | from prems have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1592 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1593 | hence "y* real c \<noteq> -?N x e" | |
| 1594 | by (simp only: nonzero_eq_divide_eq[OF cnz, where a="y" and b="-?N x e"]) simp | |
| 1595 | hence "y* real c + ?N x e \<noteq> 0" by (simp add: algebra_simps) | |
| 1596 | thus ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] | |
| 1597 | by (simp add: algebra_simps) | |
| 1598 | qed (auto simp add: nth_pos2 numbound0_I[where bs="bs" and b="y" and b'="x"]) | |
| 1599 | ||
| 1600 | lemma finite_set_intervals: | |
| 1601 | assumes px: "P (x::real)" | |
| 1602 | and lx: "l \<le> x" and xu: "x \<le> u" | |
| 1603 | and linS: "l\<in> S" and uinS: "u \<in> S" | |
| 1604 | and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u" | |
| 1605 | shows "\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a \<le> x \<and> x \<le> b \<and> P x" | |
| 1606 | proof- | |
| 1607 |   let ?Mx = "{y. y\<in> S \<and> y \<le> x}"
 | |
| 1608 |   let ?xM = "{y. y\<in> S \<and> x \<le> y}"
 | |
| 1609 | let ?a = "Max ?Mx" | |
| 1610 | let ?b = "Min ?xM" | |
| 1611 | have MxS: "?Mx \<subseteq> S" by blast | |
| 1612 | hence fMx: "finite ?Mx" using fS finite_subset by auto | |
| 1613 | from lx linS have linMx: "l \<in> ?Mx" by blast | |
| 1614 |   hence Mxne: "?Mx \<noteq> {}" by blast
 | |
| 1615 | have xMS: "?xM \<subseteq> S" by blast | |
| 1616 | hence fxM: "finite ?xM" using fS finite_subset by auto | |
| 1617 | from xu uinS have linxM: "u \<in> ?xM" by blast | |
| 1618 |   hence xMne: "?xM \<noteq> {}" by blast
 | |
| 1619 | have ax:"?a \<le> x" using Mxne fMx by auto | |
| 1620 | have xb:"x \<le> ?b" using xMne fxM by auto | |
| 1621 | have "?a \<in> ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \<in> S" using MxS by blast | |
| 1622 | have "?b \<in> ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \<in> S" using xMS by blast | |
| 1623 | have noy:"\<forall> y. ?a < y \<and> y < ?b \<longrightarrow> y \<notin> S" | |
| 1624 | proof(clarsimp) | |
| 1625 | fix y | |
| 1626 | assume ay: "?a < y" and yb: "y < ?b" and yS: "y \<in> S" | |
| 1627 | from yS have "y\<in> ?Mx \<or> y\<in> ?xM" by auto | |
| 1628 |     moreover {assume "y \<in> ?Mx" hence "y \<le> ?a" using Mxne fMx by auto with ay have "False" by simp}
 | |
| 1629 |     moreover {assume "y \<in> ?xM" hence "y \<ge> ?b" using xMne fxM by auto with yb have "False" by simp}
 | |
| 1630 | ultimately show "False" by blast | |
| 1631 | qed | |
| 1632 | from ainS binS noy ax xb px show ?thesis by blast | |
| 1633 | qed | |
| 1634 | ||
| 1635 | lemma finite_set_intervals2: | |
| 1636 | assumes px: "P (x::real)" | |
| 1637 | and lx: "l \<le> x" and xu: "x \<le> u" | |
| 1638 | and linS: "l\<in> S" and uinS: "u \<in> S" | |
| 1639 | and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u" | |
| 1640 | shows "(\<exists> s\<in> S. P s) \<or> (\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a < x \<and> x < b \<and> P x)" | |
| 1641 | proof- | |
| 1642 | from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su] | |
| 1643 | obtain a and b where | |
| 1644 | as: "a\<in> S" and bs: "b\<in> S" and noS:"\<forall>y. a < y \<and> y < b \<longrightarrow> y \<notin> S" and axb: "a \<le> x \<and> x \<le> b \<and> P x" by auto | |
| 1645 | from axb have "x= a \<or> x= b \<or> (a < x \<and> x < b)" by auto | |
| 1646 | thus ?thesis using px as bs noS by blast | |
| 1647 | qed | |
| 1648 | ||
| 1649 | lemma rinf_uset: | |
| 1650 | assumes lp: "isrlfm p" | |
| 1651 | and nmi: "\<not> (Ifm (x#bs) (minusinf p))" (is "\<not> (Ifm (x#bs) (?M p))") | |
| 1652 | and npi: "\<not> (Ifm (x#bs) (plusinf p))" (is "\<not> (Ifm (x#bs) (?P p))") | |
| 1653 | and ex: "\<exists> x. Ifm (x#bs) p" (is "\<exists> x. ?I x p") | |
| 1654 | shows "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((Inum (x#bs) l / real n + Inum (x#bs) s / real m) / 2) p" | |
| 1655 | proof- | |
| 1656 | let ?N = "\<lambda> x t. Inum (x#bs) t" | |
| 1657 | let ?U = "set (uset p)" | |
| 1658 | from ex obtain a where pa: "?I a p" by blast | |
| 1659 | from bound0_I[OF rminusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] nmi | |
| 1660 | have nmi': "\<not> (?I a (?M p))" by simp | |
| 1661 | from bound0_I[OF rplusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] npi | |
| 1662 | have npi': "\<not> (?I a (?P p))" by simp | |
| 1663 | have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((?N a l/real n + ?N a s /real m) / 2) p" | |
| 1664 | proof- | |
| 1665 | let ?M = "(\<lambda> (t,c). ?N a t / real c) ` ?U" | |
| 1666 | have fM: "finite ?M" by auto | |
| 1667 | from rminusinf_uset[OF lp nmi pa] rplusinf_uset[OF lp npi pa] | |
| 1668 | have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). a \<le> ?N x l / real n \<and> a \<ge> ?N x s / real m" by blast | |
| 1669 | then obtain "t" "n" "s" "m" where | |
| 1670 | tnU: "(t,n) \<in> ?U" and smU: "(s,m) \<in> ?U" | |
| 1671 | and xs1: "a \<le> ?N x s / real m" and tx1: "a \<ge> ?N x t / real n" by blast | |
| 1672 | from uset_l[OF lp] tnU smU numbound0_I[where bs="bs" and b="x" and b'="a"] xs1 tx1 have xs: "a \<le> ?N a s / real m" and tx: "a \<ge> ?N a t / real n" by auto | |
| 1673 |     from tnU have Mne: "?M \<noteq> {}" by auto
 | |
| 1674 |     hence Une: "?U \<noteq> {}" by simp
 | |
| 1675 | let ?l = "Min ?M" | |
| 1676 | let ?u = "Max ?M" | |
| 1677 | have linM: "?l \<in> ?M" using fM Mne by simp | |
| 1678 | have uinM: "?u \<in> ?M" using fM Mne by simp | |
| 1679 | have tnM: "?N a t / real n \<in> ?M" using tnU by auto | |
| 1680 | have smM: "?N a s / real m \<in> ?M" using smU by auto | |
| 1681 | have lM: "\<forall> t\<in> ?M. ?l \<le> t" using Mne fM by auto | |
| 1682 | have Mu: "\<forall> t\<in> ?M. t \<le> ?u" using Mne fM by auto | |
| 1683 | have "?l \<le> ?N a t / real n" using tnM Mne by simp hence lx: "?l \<le> a" using tx by simp | |
| 1684 | have "?N a s / real m \<le> ?u" using smM Mne by simp hence xu: "a \<le> ?u" using xs by simp | |
| 1685 | from finite_set_intervals2[where P="\<lambda> x. ?I x p",OF pa lx xu linM uinM fM lM Mu] | |
| 1686 | have "(\<exists> s\<in> ?M. ?I s p) \<or> | |
| 1687 | (\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p)" . | |
| 1688 |     moreover { fix u assume um: "u\<in> ?M" and pu: "?I u p"
 | |
| 1689 | hence "\<exists> (tu,nu) \<in> ?U. u = ?N a tu / real nu" by auto | |
| 1690 | then obtain "tu" "nu" where tuU: "(tu,nu) \<in> ?U" and tuu:"u= ?N a tu / real nu" by blast | |
| 1691 | have "(u + u) / 2 = u" by auto with pu tuu | |
| 1692 | have "?I (((?N a tu / real nu) + (?N a tu / real nu)) / 2) p" by simp | |
| 1693 | with tuU have ?thesis by blast} | |
| 1694 |     moreover{
 | |
| 1695 | assume "\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p" | |
| 1696 | then obtain t1 and t2 where t1M: "t1 \<in> ?M" and t2M: "t2\<in> ?M" | |
| 1697 | and noM: "\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M" and t1x: "t1 < a" and xt2: "a < t2" and px: "?I a p" | |
| 1698 | by blast | |
| 1699 | from t1M have "\<exists> (t1u,t1n) \<in> ?U. t1 = ?N a t1u / real t1n" by auto | |
| 1700 | then obtain "t1u" "t1n" where t1uU: "(t1u,t1n) \<in> ?U" and t1u: "t1 = ?N a t1u / real t1n" by blast | |
| 1701 | from t2M have "\<exists> (t2u,t2n) \<in> ?U. t2 = ?N a t2u / real t2n" by auto | |
| 1702 | then obtain "t2u" "t2n" where t2uU: "(t2u,t2n) \<in> ?U" and t2u: "t2 = ?N a t2u / real t2n" by blast | |
| 1703 | from t1x xt2 have t1t2: "t1 < t2" by simp | |
| 1704 | let ?u = "(t1 + t2) / 2" | |
| 1705 | from less_half_sum[OF t1t2] gt_half_sum[OF t1t2] have t1lu: "t1 < ?u" and ut2: "?u < t2" by auto | |
| 1706 | from lin_dense[OF lp noM t1x xt2 px t1lu ut2] have "?I ?u p" . | |
| 1707 | with t1uU t2uU t1u t2u have ?thesis by blast} | |
| 1708 | ultimately show ?thesis by blast | |
| 1709 | qed | |
| 1710 | then obtain "l" "n" "s" "m" where lnU: "(l,n) \<in> ?U" and smU:"(s,m) \<in> ?U" | |
| 1711 | and pu: "?I ((?N a l / real n + ?N a s / real m) / 2) p" by blast | |
| 1712 | from lnU smU uset_l[OF lp] have nbl: "numbound0 l" and nbs: "numbound0 s" by auto | |
| 1713 | from numbound0_I[OF nbl, where bs="bs" and b="a" and b'="x"] | |
| 1714 | numbound0_I[OF nbs, where bs="bs" and b="a" and b'="x"] pu | |
| 1715 | have "?I ((?N x l / real n + ?N x s / real m) / 2) p" by simp | |
| 1716 | with lnU smU | |
| 1717 | show ?thesis by auto | |
| 1718 | qed | |
| 1719 | (* The Ferrante - Rackoff Theorem *) | |
| 1720 | ||
| 1721 | theorem fr_eq: | |
| 1722 | assumes lp: "isrlfm p" | |
| 1723 | shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). Ifm ((((Inum (x#bs) t)/ real n + (Inum (x#bs) s) / real m) /2)#bs) p))" | |
| 1724 | (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D") | |
| 1725 | proof | |
| 1726 | assume px: "\<exists> x. ?I x p" | |
| 1727 | have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast | |
| 1728 |   moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | |
| 1729 |   moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | |
| 1730 | from rinf_uset[OF lp nmi npi] have "?F" using px by blast hence "?D" by blast} | |
| 1731 | ultimately show "?D" by blast | |
| 1732 | next | |
| 1733 | assume "?D" | |
| 1734 |   moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | |
| 1735 |   moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | |
| 1736 |   moreover {assume f:"?F" hence "?E" by blast}
 | |
| 1737 | ultimately show "?E" by blast | |
| 1738 | qed | |
| 1739 | ||
| 1740 | ||
| 1741 | lemma fr_equsubst: | |
| 1742 | assumes lp: "isrlfm p" | |
| 1743 | shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,k) \<in> set (uset p). \<exists> (s,l) \<in> set (uset p). Ifm (x#bs) (usubst p (Add(Mul l t) (Mul k s) , 2*k*l))))" | |
| 1744 | (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D") | |
| 1745 | proof | |
| 1746 | assume px: "\<exists> x. ?I x p" | |
| 1747 | have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast | |
| 1748 |   moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | |
| 1749 |   moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | |
| 1750 | let ?f ="\<lambda> (t,n). Inum (x#bs) t / real n" | |
| 1751 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1752 |     {fix t n s m assume "(t,n)\<in> set (uset p)" and "(s,m) \<in> set (uset p)"
 | |
| 1753 | with uset_l[OF lp] have tnb: "numbound0 t" and np:"real n > 0" and snb: "numbound0 s" and mp:"real m > 0" | |
| 1754 | by auto | |
| 1755 | let ?st = "Add (Mul m t) (Mul n s)" | |
| 1756 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 1757 | by (simp add: mult_commute) | |
| 1758 | from tnb snb have st_nb: "numbound0 ?st" by simp | |
| 1759 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1760 | using mnp mp np by (simp add: algebra_simps add_divide_distrib) | |
| 1761 | from usubst_I[OF lp mnp st_nb, where x="x" and bs="bs"] | |
| 1762 | have "?I x (usubst p (?st,2*n*m)) = ?I ((?N t / real n + ?N s / real m) /2) p" by (simp only: st[symmetric])} | |
| 1763 | with rinf_uset[OF lp nmi npi px] have "?F" by blast hence "?D" by blast} | |
| 1764 | ultimately show "?D" by blast | |
| 1765 | next | |
| 1766 | assume "?D" | |
| 1767 |   moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | |
| 1768 |   moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | |
| 1769 |   moreover {fix t k s l assume "(t,k) \<in> set (uset p)" and "(s,l) \<in> set (uset p)" 
 | |
| 1770 | and px:"?I x (usubst p (Add (Mul l t) (Mul k s), 2*k*l))" | |
| 1771 | with uset_l[OF lp] have tnb: "numbound0 t" and np:"real k > 0" and snb: "numbound0 s" and mp:"real l > 0" by auto | |
| 1772 | let ?st = "Add (Mul l t) (Mul k s)" | |
| 1773 | from mult_pos_pos[OF np mp] have mnp: "real (2*k*l) > 0" | |
| 1774 | by (simp add: mult_commute) | |
| 1775 | from tnb snb have st_nb: "numbound0 ?st" by simp | |
| 1776 | from usubst_I[OF lp mnp st_nb, where bs="bs"] px have "?E" by auto} | |
| 1777 | ultimately show "?E" by blast | |
| 1778 | qed | |
| 1779 | ||
| 1780 | ||
| 1781 | (* Implement the right hand side of Ferrante and Rackoff's Theorem. *) | |
| 1782 | constdefs ferrack:: "fm \<Rightarrow> fm" | |
| 1783 | "ferrack p \<equiv> (let p' = rlfm (simpfm p); mp = minusinf p'; pp = plusinf p' | |
| 1784 | in if (mp = T \<or> pp = T) then T else | |
| 1785 | (let U = remdps(map simp_num_pair | |
| 1786 | (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) | |
| 1787 | (alluopairs (uset p')))) | |
| 1788 | in decr (disj mp (disj pp (evaldjf (simpfm o (usubst p')) U)))))" | |
| 1789 | ||
| 1790 | lemma uset_cong_aux: | |
| 1791 | assumes Ul: "\<forall> (t,n) \<in> set U. numbound0 t \<and> n >0" | |
| 1792 | shows "((\<lambda> (t,n). Inum (x#bs) t /real n) ` (set (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) (alluopairs U)))) = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (set U \<times> set U))" | |
| 1793 | (is "?lhs = ?rhs") | |
| 1794 | proof(auto) | |
| 1795 | fix t n s m | |
| 1796 | assume "((t,n),(s,m)) \<in> set (alluopairs U)" | |
| 1797 | hence th: "((t,n),(s,m)) \<in> (set U \<times> set U)" | |
| 1798 | using alluopairs_set1[where xs="U"] by blast | |
| 1799 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1800 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1801 | from Ul th have mnz: "m \<noteq> 0" by auto | |
| 1802 | from Ul th have nnz: "n \<noteq> 0" by auto | |
| 1803 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1804 | using mnz nnz by (simp add: algebra_simps add_divide_distrib) | |
| 1805 | ||
| 1806 | thus "(real m * Inum (x # bs) t + real n * Inum (x # bs) s) / | |
| 1807 | (2 * real n * real m) | |
| 1808 | \<in> (\<lambda>((t, n), s, m). | |
| 1809 | (Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2) ` | |
| 1810 | (set U \<times> set U)"using mnz nnz th | |
| 1811 | apply (auto simp add: th add_divide_distrib algebra_simps split_def image_def) | |
| 1812 | by (rule_tac x="(s,m)" in bexI,simp_all) | |
| 1813 | (rule_tac x="(t,n)" in bexI,simp_all) | |
| 1814 | next | |
| 1815 | fix t n s m | |
| 1816 | assume tnU: "(t,n) \<in> set U" and smU:"(s,m) \<in> set U" | |
| 1817 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1818 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1819 | from Ul smU have mnz: "m \<noteq> 0" by auto | |
| 1820 | from Ul tnU have nnz: "n \<noteq> 0" by auto | |
| 1821 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1822 | using mnz nnz by (simp add: algebra_simps add_divide_distrib) | |
| 1823 | let ?P = "\<lambda> (t',n') (s',m'). (Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2" | |
| 1824 | have Pc:"\<forall> a b. ?P a b = ?P b a" | |
| 1825 | by auto | |
| 1826 | from Ul alluopairs_set1 have Up:"\<forall> ((t,n),(s,m)) \<in> set (alluopairs U). n \<noteq> 0 \<and> m \<noteq> 0" by blast | |
| 1827 | from alluopairs_ex[OF Pc, where xs="U"] tnU smU | |
| 1828 | have th':"\<exists> ((t',n'),(s',m')) \<in> set (alluopairs U). ?P (t',n') (s',m')" | |
| 1829 | by blast | |
| 1830 | then obtain t' n' s' m' where ts'_U: "((t',n'),(s',m')) \<in> set (alluopairs U)" | |
| 1831 | and Pts': "?P (t',n') (s',m')" by blast | |
| 1832 | from ts'_U Up have mnz': "m' \<noteq> 0" and nnz': "n'\<noteq> 0" by auto | |
| 1833 | let ?st' = "Add (Mul m' t') (Mul n' s')" | |
| 1834 | have st': "(?N t' / real n' + ?N s' / real m')/2 = ?N ?st' / real (2*n'*m')" | |
| 1835 | using mnz' nnz' by (simp add: algebra_simps add_divide_distrib) | |
| 1836 | from Pts' have | |
| 1837 | "(Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2" by simp | |
| 1838 | also have "\<dots> = ((\<lambda>(t, n). Inum (x # bs) t / real n) ((\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ((t',n'),(s',m'))))" by (simp add: st') | |
| 1839 | finally show "(Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2 | |
| 1840 | \<in> (\<lambda>(t, n). Inum (x # bs) t / real n) ` | |
| 1841 | (\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ` | |
| 1842 | set (alluopairs U)" | |
| 1843 | using ts'_U by blast | |
| 1844 | qed | |
| 1845 | ||
| 1846 | lemma uset_cong: | |
| 1847 | assumes lp: "isrlfm p" | |
| 1848 | and UU': "((\<lambda> (t,n). Inum (x#bs) t /real n) ` U') = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (U \<times> U))" (is "?f ` U' = ?g ` (U\<times>U)") | |
| 1849 | and U: "\<forall> (t,n) \<in> U. numbound0 t \<and> n > 0" | |
| 1850 | and U': "\<forall> (t,n) \<in> U'. numbound0 t \<and> n > 0" | |
| 1851 | shows "(\<exists> (t,n) \<in> U. \<exists> (s,m) \<in> U. Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))) = (\<exists> (t,n) \<in> U'. Ifm (x#bs) (usubst p (t,n)))" | |
| 1852 | (is "?lhs = ?rhs") | |
| 1853 | proof | |
| 1854 | assume ?lhs | |
| 1855 | then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and | |
| 1856 | Pst: "Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))" by blast | |
| 1857 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1858 | from tnU smU U have tnb: "numbound0 t" and np: "n > 0" | |
| 1859 | and snb: "numbound0 s" and mp:"m > 0" by auto | |
| 1860 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1861 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 1862 | by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult) | |
| 1863 | from tnb snb have stnb: "numbound0 ?st" by simp | |
| 1864 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1865 | using mp np by (simp add: algebra_simps add_divide_distrib) | |
| 1866 | from tnU smU UU' have "?g ((t,n),(s,m)) \<in> ?f ` U'" by blast | |
| 1867 | hence "\<exists> (t',n') \<in> U'. ?g ((t,n),(s,m)) = ?f (t',n')" | |
| 1868 | by auto (rule_tac x="(a,b)" in bexI, auto) | |
| 1869 | then obtain t' n' where tnU': "(t',n') \<in> U'" and th: "?g ((t,n),(s,m)) = ?f (t',n')" by blast | |
| 1870 | from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto | |
| 1871 | from usubst_I[OF lp mnp stnb, where bs="bs" and x="x"] Pst | |
| 1872 | have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp | |
| 1873 | from conjunct1[OF usubst_I[OF lp np' tnb', where bs="bs" and x="x"], symmetric] th[simplified split_def fst_conv snd_conv,symmetric] Pst2[simplified st[symmetric]] | |
| 1874 | have "Ifm (x # bs) (usubst p (t', n')) " by (simp only: st) | |
| 1875 | then show ?rhs using tnU' by auto | |
| 1876 | next | |
| 1877 | assume ?rhs | |
| 1878 | then obtain t' n' where tnU': "(t',n') \<in> U'" and Pt': "Ifm (x # bs) (usubst p (t', n'))" | |
| 1879 | by blast | |
| 1880 | from tnU' UU' have "?f (t',n') \<in> ?g ` (U\<times>U)" by blast | |
| 1881 | hence "\<exists> ((t,n),(s,m)) \<in> (U\<times>U). ?f (t',n') = ?g ((t,n),(s,m))" | |
| 1882 | by auto (rule_tac x="(a,b)" in bexI, auto) | |
| 1883 | then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and | |
| 1884 | th: "?f (t',n') = ?g((t,n),(s,m)) "by blast | |
| 1885 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1886 | from tnU smU U have tnb: "numbound0 t" and np: "n > 0" | |
| 1887 | and snb: "numbound0 s" and mp:"m > 0" by auto | |
| 1888 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1889 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 1890 | by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult) | |
| 1891 | from tnb snb have stnb: "numbound0 ?st" by simp | |
| 1892 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1893 | using mp np by (simp add: algebra_simps add_divide_distrib) | |
| 1894 | from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto | |
| 1895 | from usubst_I[OF lp np' tnb', where bs="bs" and x="x",simplified th[simplified split_def fst_conv snd_conv] st] Pt' | |
| 1896 | have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp | |
| 1897 | with usubst_I[OF lp mnp stnb, where x="x" and bs="bs"] tnU smU show ?lhs by blast | |
| 1898 | qed | |
| 1899 | ||
| 1900 | lemma ferrack: | |
| 1901 | assumes qf: "qfree p" | |
| 1902 | shows "qfree (ferrack p) \<and> ((Ifm bs (ferrack p)) = (\<exists> x. Ifm (x#bs) p))" | |
| 1903 | (is "_ \<and> (?rhs = ?lhs)") | |
| 1904 | proof- | |
| 1905 | let ?I = "\<lambda> x p. Ifm (x#bs) p" | |
| 1906 | fix x | |
| 1907 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1908 | let ?q = "rlfm (simpfm p)" | |
| 1909 | let ?U = "uset ?q" | |
| 1910 | let ?Up = "alluopairs ?U" | |
| 1911 | let ?g = "\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)" | |
| 1912 | let ?S = "map ?g ?Up" | |
| 1913 | let ?SS = "map simp_num_pair ?S" | |
| 1914 | let ?Y = "remdps ?SS" | |
| 1915 | let ?f= "(\<lambda> (t,n). ?N t / real n)" | |
| 1916 | let ?h = "\<lambda> ((t,n),(s,m)). (?N t/real n + ?N s/ real m) /2" | |
| 1917 | let ?F = "\<lambda> p. \<exists> a \<in> set (uset p). \<exists> b \<in> set (uset p). ?I x (usubst p (?g(a,b)))" | |
| 1918 | let ?ep = "evaldjf (simpfm o (usubst ?q)) ?Y" | |
| 1919 | from rlfm_I[OF simpfm_qf[OF qf]] have lq: "isrlfm ?q" by blast | |
| 1920 | from alluopairs_set1[where xs="?U"] have UpU: "set ?Up \<le> (set ?U \<times> set ?U)" by simp | |
| 1921 | from uset_l[OF lq] have U_l: "\<forall> (t,n) \<in> set ?U. numbound0 t \<and> n > 0" . | |
| 1922 | from U_l UpU | |
| 1923 | have "\<forall> ((t,n),(s,m)) \<in> set ?Up. numbound0 t \<and> n> 0 \<and> numbound0 s \<and> m > 0" by auto | |
| 1924 | hence Snb: "\<forall> (t,n) \<in> set ?S. numbound0 t \<and> n > 0 " | |
| 1925 | by (auto simp add: mult_pos_pos) | |
| 1926 | have Y_l: "\<forall> (t,n) \<in> set ?Y. numbound0 t \<and> n > 0" | |
| 1927 | proof- | |
| 1928 |     { fix t n assume tnY: "(t,n) \<in> set ?Y" 
 | |
| 1929 | hence "(t,n) \<in> set ?SS" by simp | |
| 1930 | hence "\<exists> (t',n') \<in> set ?S. simp_num_pair (t',n') = (t,n)" | |
| 1931 | by (auto simp add: split_def) (rule_tac x="((aa,ba),(ab,bb))" in bexI, simp_all) | |
| 1932 | then obtain t' n' where tn'S: "(t',n') \<in> set ?S" and tns: "simp_num_pair (t',n') = (t,n)" by blast | |
| 1933 | from tn'S Snb have tnb: "numbound0 t'" and np: "n' > 0" by auto | |
| 1934 | from simp_num_pair_l[OF tnb np tns] | |
| 1935 | have "numbound0 t \<and> n > 0" . } | |
| 1936 | thus ?thesis by blast | |
| 1937 | qed | |
| 1938 | ||
| 1939 | have YU: "(?f ` set ?Y) = (?h ` (set ?U \<times> set ?U))" | |
| 1940 | proof- | |
| 1941 | from simp_num_pair_ci[where bs="x#bs"] have | |
| 1942 | "\<forall>x. (?f o simp_num_pair) x = ?f x" by auto | |
| 1943 | hence th: "?f o simp_num_pair = ?f" using ext by blast | |
| 1944 | have "(?f ` set ?Y) = ((?f o simp_num_pair) ` set ?S)" by (simp add: image_compose) | |
| 1945 | also have "\<dots> = (?f ` set ?S)" by (simp add: th) | |
| 1946 | also have "\<dots> = ((?f o ?g) ` set ?Up)" | |
| 1947 | by (simp only: set_map o_def image_compose[symmetric]) | |
| 1948 | also have "\<dots> = (?h ` (set ?U \<times> set ?U))" | |
| 1949 | using uset_cong_aux[OF U_l, where x="x" and bs="bs", simplified set_map image_compose[symmetric]] by blast | |
| 1950 | finally show ?thesis . | |
| 1951 | qed | |
| 1952 | have "\<forall> (t,n) \<in> set ?Y. bound0 (simpfm (usubst ?q (t,n)))" | |
| 1953 | proof- | |
| 1954 |     { fix t n assume tnY: "(t,n) \<in> set ?Y"
 | |
| 1955 | with Y_l have tnb: "numbound0 t" and np: "real n > 0" by auto | |
| 1956 | from usubst_I[OF lq np tnb] | |
| 1957 | have "bound0 (usubst ?q (t,n))" by simp hence "bound0 (simpfm (usubst ?q (t,n)))" | |
| 1958 | using simpfm_bound0 by simp} | |
| 1959 | thus ?thesis by blast | |
| 1960 | qed | |
| 1961 | hence ep_nb: "bound0 ?ep" using evaldjf_bound0[where xs="?Y" and f="simpfm o (usubst ?q)"] by auto | |
| 1962 | let ?mp = "minusinf ?q" | |
| 1963 | let ?pp = "plusinf ?q" | |
| 1964 | let ?M = "?I x ?mp" | |
| 1965 | let ?P = "?I x ?pp" | |
| 1966 | let ?res = "disj ?mp (disj ?pp ?ep)" | |
| 1967 | from rminusinf_bound0[OF lq] rplusinf_bound0[OF lq] ep_nb | |
| 1968 | have nbth: "bound0 ?res" by auto | |
| 1969 | ||
| 1970 | from conjunct1[OF rlfm_I[OF simpfm_qf[OF qf]]] simpfm | |
| 1971 | ||
| 1972 | have th: "?lhs = (\<exists> x. ?I x ?q)" by auto | |
| 1973 | from th fr_equsubst[OF lq, where bs="bs" and x="x"] have lhfr: "?lhs = (?M \<or> ?P \<or> ?F ?q)" | |
| 1974 | by (simp only: split_def fst_conv snd_conv) | |
| 1975 | also have "\<dots> = (?M \<or> ?P \<or> (\<exists> (t,n) \<in> set ?Y. ?I x (simpfm (usubst ?q (t,n)))))" | |
| 1976 | using uset_cong[OF lq YU U_l Y_l] by (simp only: split_def fst_conv snd_conv simpfm) | |
| 1977 | also have "\<dots> = (Ifm (x#bs) ?res)" | |
| 1978 | using evaldjf_ex[where ps="?Y" and bs = "x#bs" and f="simpfm o (usubst ?q)",symmetric] | |
| 1979 | by (simp add: split_def pair_collapse) | |
| 1980 | finally have lheq: "?lhs = (Ifm bs (decr ?res))" using decr[OF nbth] by blast | |
| 1981 | hence lr: "?lhs = ?rhs" apply (unfold ferrack_def Let_def) | |
| 1982 | by (cases "?mp = T \<or> ?pp = T", auto) (simp add: disj_def)+ | |
| 1983 | from decr_qf[OF nbth] have "qfree (ferrack p)" by (auto simp add: Let_def ferrack_def) | |
| 1984 | with lr show ?thesis by blast | |
| 1985 | qed | |
| 1986 | ||
| 1987 | definition linrqe:: "fm \<Rightarrow> fm" where | |
| 1988 | "linrqe p = qelim (prep p) ferrack" | |
| 1989 | ||
| 1990 | theorem linrqe: "Ifm bs (linrqe p) = Ifm bs p \<and> qfree (linrqe p)" | |
| 1991 | using ferrack qelim_ci prep | |
| 1992 | unfolding linrqe_def by auto | |
| 1993 | ||
| 1994 | definition ferrack_test :: "unit \<Rightarrow> fm" where | |
| 1995 | "ferrack_test u = linrqe (A (A (Imp (Lt (Sub (Bound 1) (Bound 0))) | |
| 1996 | (E (Eq (Sub (Add (Bound 0) (Bound 2)) (Bound 1)))))))" | |
| 1997 | ||
| 30684 
c98a64746c69
suddenly infix identifier oo occurs in generated code
 haftmann parents: 
30439diff
changeset | 1998 | code_reserved SML oo | 
| 
c98a64746c69
suddenly infix identifier oo occurs in generated code
 haftmann parents: 
30439diff
changeset | 1999 | |
| 29789 | 2000 | ML {* @{code ferrack_test} () *}
 | 
| 2001 | ||
| 2002 | oracle linr_oracle = {*
 | |
| 2003 | let | |
| 2004 | ||
| 2005 | fun num_of_term vs (t as Free (xn, xT)) = (case AList.lookup (op =) vs t | |
| 2006 | of NONE => error "Variable not found in the list!" | |
| 2007 |       | SOME n => @{code Bound} n)
 | |
| 2008 |   | num_of_term vs @{term "real (0::int)"} = @{code C} 0
 | |
| 2009 |   | num_of_term vs @{term "real (1::int)"} = @{code C} 1
 | |
| 2010 |   | num_of_term vs @{term "0::real"} = @{code C} 0
 | |
| 2011 |   | num_of_term vs @{term "1::real"} = @{code C} 1
 | |
| 2012 |   | num_of_term vs (Bound i) = @{code Bound} i
 | |
| 2013 |   | num_of_term vs (@{term "uminus :: real \<Rightarrow> real"} $ t') = @{code Neg} (num_of_term vs t')
 | |
| 2014 |   | num_of_term vs (@{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = @{code Add} (num_of_term vs t1, num_of_term vs t2)
 | |
| 2015 |   | num_of_term vs (@{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = @{code Sub} (num_of_term vs t1, num_of_term vs t2)
 | |
| 2016 |   | num_of_term vs (@{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = (case (num_of_term vs t1)
 | |
| 2017 |      of @{code C} i => @{code Mul} (i, num_of_term vs t2)
 | |
| 2018 | | _ => error "num_of_term: unsupported Multiplication") | |
| 2019 |   | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ (@{term "number_of :: int \<Rightarrow> int"} $ t')) = @{code C} (HOLogic.dest_numeral t')
 | |
| 2020 |   | num_of_term vs (@{term "number_of :: int \<Rightarrow> real"} $ t') = @{code C} (HOLogic.dest_numeral t')
 | |
| 2021 |   | num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term @{context} t);
 | |
| 2022 | ||
| 2023 | fun fm_of_term vs @{term True} = @{code T}
 | |
| 2024 |   | fm_of_term vs @{term False} = @{code F}
 | |
| 2025 |   | fm_of_term vs (@{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) = @{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | |
| 2026 |   | fm_of_term vs (@{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) = @{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | |
| 2027 |   | fm_of_term vs (@{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) = @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) 
 | |
| 2028 |   | fm_of_term vs (@{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) = @{code Iff} (fm_of_term vs t1, fm_of_term vs t2)
 | |
| 2029 |   | fm_of_term vs (@{term "op &"} $ t1 $ t2) = @{code And} (fm_of_term vs t1, fm_of_term vs t2)
 | |
| 2030 |   | fm_of_term vs (@{term "op |"} $ t1 $ t2) = @{code Or} (fm_of_term vs t1, fm_of_term vs t2)
 | |
| 2031 |   | fm_of_term vs (@{term "op -->"} $ t1 $ t2) = @{code Imp} (fm_of_term vs t1, fm_of_term vs t2)
 | |
| 2032 |   | fm_of_term vs (@{term "Not"} $ t') = @{code NOT} (fm_of_term vs t')
 | |
| 2033 |   | fm_of_term vs (Const ("Ex", _) $ Abs (xn, xT, p)) =
 | |
| 2034 |       @{code E} (fm_of_term (map (fn (v, n) => (v, n + 1)) vs) p)
 | |
| 2035 |   | fm_of_term vs (Const ("All", _) $ Abs (xn, xT, p)) =
 | |
| 2036 |       @{code A} (fm_of_term (map (fn (v, n) => (v, n + 1)) vs) p)
 | |
| 2037 |   | fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t);
 | |
| 2038 | ||
| 2039 | fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $ HOLogic.mk_number HOLogic.intT i
 | |
| 2040 |   | term_of_num vs (@{code Bound} n) = fst (the (find_first (fn (_, m) => n = m) vs))
 | |
| 2041 |   | term_of_num vs (@{code Neg} t') = @{term "uminus :: real \<Rightarrow> real"} $ term_of_num vs t'
 | |
| 2042 |   | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 2043 | term_of_num vs t1 $ term_of_num vs t2 | |
| 2044 |   | term_of_num vs (@{code Sub} (t1, t2)) = @{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 2045 | term_of_num vs t1 $ term_of_num vs t2 | |
| 2046 |   | term_of_num vs (@{code Mul} (i, t2)) = @{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 2047 |       term_of_num vs (@{code C} i) $ term_of_num vs t2
 | |
| 2048 |   | term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t));
 | |
| 2049 | ||
| 2050 | fun term_of_fm vs @{code T} = HOLogic.true_const 
 | |
| 2051 |   | term_of_fm vs @{code F} = HOLogic.false_const
 | |
| 2052 |   | term_of_fm vs (@{code Lt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 2053 |       term_of_num vs t $ @{term "0::real"}
 | |
| 2054 |   | term_of_fm vs (@{code Le} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 2055 |       term_of_num vs t $ @{term "0::real"}
 | |
| 2056 |   | term_of_fm vs (@{code Gt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 2057 |       @{term "0::real"} $ term_of_num vs t
 | |
| 2058 |   | term_of_fm vs (@{code Ge} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 2059 |       @{term "0::real"} $ term_of_num vs t
 | |
| 2060 |   | term_of_fm vs (@{code Eq} t) = @{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 2061 |       term_of_num vs t $ @{term "0::real"}
 | |
| 2062 |   | term_of_fm vs (@{code NEq} t) = term_of_fm vs (@{code NOT} (@{code Eq} t))
 | |
| 2063 |   | term_of_fm vs (@{code NOT} t') = HOLogic.Not $ term_of_fm vs t'
 | |
| 2064 |   | term_of_fm vs (@{code And} (t1, t2)) = HOLogic.conj $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 2065 |   | term_of_fm vs (@{code Or} (t1, t2)) = HOLogic.disj $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 2066 |   | term_of_fm vs (@{code Imp}  (t1, t2)) = HOLogic.imp $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 2067 |   | term_of_fm vs (@{code Iff} (t1, t2)) = @{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $
 | |
| 2068 | term_of_fm vs t1 $ term_of_fm vs t2 | |
| 2069 | | term_of_fm vs _ = error "If this is raised, Isabelle/HOL or generate_code is inconsistent."; | |
| 2070 | ||
| 2071 | in fn ct => | |
| 2072 | let | |
| 2073 | val thy = Thm.theory_of_cterm ct; | |
| 2074 | val t = Thm.term_of ct; | |
| 2075 | val fs = OldTerm.term_frees t; | |
| 2076 | val vs = fs ~~ (0 upto (length fs - 1)); | |
| 2077 |     val res = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, term_of_fm vs (@{code linrqe} (fm_of_term vs t))));
 | |
| 2078 | in Thm.cterm_of thy res end | |
| 2079 | end; | |
| 2080 | *} | |
| 2081 | ||
| 2082 | use "ferrack_tac.ML" | |
| 2083 | setup Ferrack_Tac.setup | |
| 2084 | ||
| 2085 | lemma | |
| 2086 | fixes x :: real | |
| 2087 | shows "2 * x \<le> 2 * x \<and> 2 * x \<le> 2 * x + 1" | |
| 2088 | apply rferrack | |
| 2089 | done | |
| 2090 | ||
| 2091 | lemma | |
| 2092 | fixes x :: real | |
| 2093 | shows "\<exists>y \<le> x. x = y + 1" | |
| 2094 | apply rferrack | |
| 2095 | done | |
| 2096 | ||
| 2097 | lemma | |
| 2098 | fixes x :: real | |
| 2099 | shows "\<not> (\<exists>z. x + z = x + z + 1)" | |
| 2100 | apply rferrack | |
| 2101 | done | |
| 2102 | ||
| 2103 | end |