|
35303
|
1 |
(* Author: Florian Haftmann, TU Muenchen *)
|
|
|
2 |
|
|
|
3 |
header {* Lists with elements distinct as canonical example for datatype invariants *}
|
|
|
4 |
|
|
|
5 |
theory Dlist
|
|
|
6 |
imports Main Fset
|
|
|
7 |
begin
|
|
|
8 |
|
|
|
9 |
section {* Prelude *}
|
|
|
10 |
|
|
|
11 |
text {* Without canonical argument order, higher-order things tend to get confusing quite fast: *}
|
|
|
12 |
|
|
|
13 |
setup {* Sign.map_naming (Name_Space.add_path "List") *}
|
|
|
14 |
|
|
|
15 |
primrec member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where
|
|
|
16 |
"member [] y \<longleftrightarrow> False"
|
|
|
17 |
| "member (x#xs) y \<longleftrightarrow> x = y \<or> member xs y"
|
|
|
18 |
|
|
|
19 |
lemma member_set:
|
|
|
20 |
"member = set"
|
|
|
21 |
proof (rule ext)+
|
|
|
22 |
fix xs :: "'a list" and x :: 'a
|
|
|
23 |
have "member xs x \<longleftrightarrow> x \<in> set xs" by (induct xs) auto
|
|
|
24 |
then show "member xs x = set xs x" by (simp add: mem_def)
|
|
|
25 |
qed
|
|
|
26 |
|
|
|
27 |
lemma not_set_compl:
|
|
|
28 |
"Not \<circ> set xs = - set xs"
|
|
|
29 |
by (simp add: fun_Compl_def bool_Compl_def comp_def expand_fun_eq)
|
|
|
30 |
|
|
|
31 |
primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
|
|
|
32 |
"fold f [] s = s"
|
|
|
33 |
| "fold f (x#xs) s = fold f xs (f x s)"
|
|
|
34 |
|
|
|
35 |
lemma foldl_fold:
|
|
|
36 |
"foldl f s xs = List.fold (\<lambda>x s. f s x) xs s"
|
|
|
37 |
by (induct xs arbitrary: s) simp_all
|
|
|
38 |
|
|
|
39 |
setup {* Sign.map_naming Name_Space.parent_path *}
|
|
|
40 |
|
|
|
41 |
|
|
|
42 |
section {* The type of distinct lists *}
|
|
|
43 |
|
|
|
44 |
typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
|
|
|
45 |
morphisms list_of_dlist Abs_dlist
|
|
|
46 |
proof
|
|
|
47 |
show "[] \<in> ?dlist" by simp
|
|
|
48 |
qed
|
|
|
49 |
|
|
|
50 |
text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
|
|
|
51 |
|
|
|
52 |
definition Dlist :: "'a list \<Rightarrow> 'a dlist" where
|
|
|
53 |
[code del]: "Dlist xs = Abs_dlist (remdups xs)"
|
|
|
54 |
|
|
|
55 |
lemma distinct_list_of_dlist [simp]:
|
|
|
56 |
"distinct (list_of_dlist dxs)"
|
|
|
57 |
using list_of_dlist [of dxs] by simp
|
|
|
58 |
|
|
|
59 |
lemma list_of_dlist_Dlist [simp]:
|
|
|
60 |
"list_of_dlist (Dlist xs) = remdups xs"
|
|
|
61 |
by (simp add: Dlist_def Abs_dlist_inverse)
|
|
|
62 |
|
|
|
63 |
lemma Dlist_list_of_dlist [simp]:
|
|
|
64 |
"Dlist (list_of_dlist dxs) = dxs"
|
|
|
65 |
by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id)
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
text {* Fundamental operations: *}
|
|
|
69 |
|
|
|
70 |
definition empty :: "'a dlist" where
|
|
|
71 |
"empty = Dlist []"
|
|
|
72 |
|
|
|
73 |
definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
|
|
|
74 |
"insert x dxs = Dlist (List.insert x (list_of_dlist dxs))"
|
|
|
75 |
|
|
|
76 |
definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
|
|
|
77 |
"remove x dxs = Dlist (remove1 x (list_of_dlist dxs))"
|
|
|
78 |
|
|
|
79 |
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" where
|
|
|
80 |
"map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))"
|
|
|
81 |
|
|
|
82 |
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
|
|
|
83 |
"filter P dxs = Dlist (List.filter P (list_of_dlist dxs))"
|
|
|
84 |
|
|
|
85 |
|
|
|
86 |
text {* Derived operations: *}
|
|
|
87 |
|
|
|
88 |
definition null :: "'a dlist \<Rightarrow> bool" where
|
|
|
89 |
"null dxs = List.null (list_of_dlist dxs)"
|
|
|
90 |
|
|
|
91 |
definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" where
|
|
|
92 |
"member dxs = List.member (list_of_dlist dxs)"
|
|
|
93 |
|
|
|
94 |
definition length :: "'a dlist \<Rightarrow> nat" where
|
|
|
95 |
"length dxs = List.length (list_of_dlist dxs)"
|
|
|
96 |
|
|
|
97 |
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
|
|
|
98 |
"fold f dxs = List.fold f (list_of_dlist dxs)"
|
|
|
99 |
|
|
|
100 |
|
|
|
101 |
section {* Executable version obeying invariant *}
|
|
|
102 |
|
|
|
103 |
code_abstype Dlist list_of_dlist
|
|
|
104 |
by simp
|
|
|
105 |
|
|
|
106 |
lemma list_of_dlist_empty [simp, code abstract]:
|
|
|
107 |
"list_of_dlist empty = []"
|
|
|
108 |
by (simp add: empty_def)
|
|
|
109 |
|
|
|
110 |
lemma list_of_dlist_insert [simp, code abstract]:
|
|
|
111 |
"list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)"
|
|
|
112 |
by (simp add: insert_def)
|
|
|
113 |
|
|
|
114 |
lemma list_of_dlist_remove [simp, code abstract]:
|
|
|
115 |
"list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)"
|
|
|
116 |
by (simp add: remove_def)
|
|
|
117 |
|
|
|
118 |
lemma list_of_dlist_map [simp, code abstract]:
|
|
|
119 |
"list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))"
|
|
|
120 |
by (simp add: map_def)
|
|
|
121 |
|
|
|
122 |
lemma list_of_dlist_filter [simp, code abstract]:
|
|
|
123 |
"list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)"
|
|
|
124 |
by (simp add: filter_def)
|
|
|
125 |
|
|
|
126 |
|
|
|
127 |
section {* Implementation of sets by distinct lists -- canonical! *}
|
|
|
128 |
|
|
|
129 |
definition Set :: "'a dlist \<Rightarrow> 'a fset" where
|
|
|
130 |
"Set dxs = Fset.Set (list_of_dlist dxs)"
|
|
|
131 |
|
|
|
132 |
definition Coset :: "'a dlist \<Rightarrow> 'a fset" where
|
|
|
133 |
"Coset dxs = Fset.Coset (list_of_dlist dxs)"
|
|
|
134 |
|
|
|
135 |
code_datatype Set Coset
|
|
|
136 |
|
|
|
137 |
declare member_code [code del]
|
|
|
138 |
declare is_empty_Set [code del]
|
|
|
139 |
declare empty_Set [code del]
|
|
|
140 |
declare UNIV_Set [code del]
|
|
|
141 |
declare insert_Set [code del]
|
|
|
142 |
declare remove_Set [code del]
|
|
|
143 |
declare map_Set [code del]
|
|
|
144 |
declare filter_Set [code del]
|
|
|
145 |
declare forall_Set [code del]
|
|
|
146 |
declare exists_Set [code del]
|
|
|
147 |
declare card_Set [code del]
|
|
|
148 |
declare subfset_eq_forall [code del]
|
|
|
149 |
declare subfset_subfset_eq [code del]
|
|
|
150 |
declare eq_fset_subfset_eq [code del]
|
|
|
151 |
declare inter_project [code del]
|
|
|
152 |
declare subtract_remove [code del]
|
|
|
153 |
declare union_insert [code del]
|
|
|
154 |
declare Infimum_inf [code del]
|
|
|
155 |
declare Supremum_sup [code del]
|
|
|
156 |
|
|
|
157 |
lemma Set_Dlist [simp]:
|
|
|
158 |
"Set (Dlist xs) = Fset (set xs)"
|
|
|
159 |
by (simp add: Set_def Fset.Set_def)
|
|
|
160 |
|
|
|
161 |
lemma Coset_Dlist [simp]:
|
|
|
162 |
"Coset (Dlist xs) = Fset (- set xs)"
|
|
|
163 |
by (simp add: Coset_def Fset.Coset_def)
|
|
|
164 |
|
|
|
165 |
lemma member_Set [simp]:
|
|
|
166 |
"Fset.member (Set dxs) = List.member (list_of_dlist dxs)"
|
|
|
167 |
by (simp add: Set_def member_set)
|
|
|
168 |
|
|
|
169 |
lemma member_Coset [simp]:
|
|
|
170 |
"Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"
|
|
|
171 |
by (simp add: Coset_def member_set not_set_compl)
|
|
|
172 |
|
|
|
173 |
lemma is_empty_Set [code]:
|
|
|
174 |
"Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
|
|
|
175 |
by (simp add: null_def null_empty member_set)
|
|
|
176 |
|
|
|
177 |
lemma bot_code [code]:
|
|
|
178 |
"bot = Set empty"
|
|
|
179 |
by (simp add: empty_def)
|
|
|
180 |
|
|
|
181 |
lemma top_code [code]:
|
|
|
182 |
"top = Coset empty"
|
|
|
183 |
by (simp add: empty_def)
|
|
|
184 |
|
|
|
185 |
lemma insert_code [code]:
|
|
|
186 |
"Fset.insert x (Set dxs) = Set (insert x dxs)"
|
|
|
187 |
"Fset.insert x (Coset dxs) = Coset (remove x dxs)"
|
|
|
188 |
by (simp_all add: insert_def remove_def member_set not_set_compl)
|
|
|
189 |
|
|
|
190 |
lemma remove_code [code]:
|
|
|
191 |
"Fset.remove x (Set dxs) = Set (remove x dxs)"
|
|
|
192 |
"Fset.remove x (Coset dxs) = Coset (insert x dxs)"
|
|
|
193 |
by (auto simp add: insert_def remove_def member_set not_set_compl)
|
|
|
194 |
|
|
|
195 |
lemma member_code [code]:
|
|
|
196 |
"Fset.member (Set dxs) = member dxs"
|
|
|
197 |
"Fset.member (Coset dxs) = Not \<circ> member dxs"
|
|
|
198 |
by (simp_all add: member_def)
|
|
|
199 |
|
|
|
200 |
lemma map_code [code]:
|
|
|
201 |
"Fset.map f (Set dxs) = Set (map f dxs)"
|
|
|
202 |
by (simp add: member_set)
|
|
|
203 |
|
|
|
204 |
lemma filter_code [code]:
|
|
|
205 |
"Fset.filter f (Set dxs) = Set (filter f dxs)"
|
|
|
206 |
by (simp add: member_set)
|
|
|
207 |
|
|
|
208 |
lemma forall_Set [code]:
|
|
|
209 |
"Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
|
|
|
210 |
by (simp add: member_set list_all_iff)
|
|
|
211 |
|
|
|
212 |
lemma exists_Set [code]:
|
|
|
213 |
"Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"
|
|
|
214 |
by (simp add: member_set list_ex_iff)
|
|
|
215 |
|
|
|
216 |
lemma card_code [code]:
|
|
|
217 |
"Fset.card (Set dxs) = length dxs"
|
|
|
218 |
by (simp add: length_def member_set distinct_card)
|
|
|
219 |
|
|
|
220 |
lemma foldl_list_of_dlist:
|
|
|
221 |
"foldl f s (list_of_dlist dxs) = fold (\<lambda>x s. f s x) dxs s"
|
|
|
222 |
by (simp add: foldl_fold fold_def)
|
|
|
223 |
|
|
|
224 |
lemma inter_code [code]:
|
|
|
225 |
"inf A (Set xs) = Set (filter (Fset.member A) xs)"
|
|
|
226 |
"inf A (Coset xs) = fold Fset.remove xs A"
|
|
|
227 |
by (simp_all only: Set_def Coset_def foldl_list_of_dlist inter_project list_of_dlist_filter)
|
|
|
228 |
|
|
|
229 |
lemma subtract_code [code]:
|
|
|
230 |
"A - Set xs = fold Fset.remove xs A"
|
|
|
231 |
"A - Coset xs = Set (filter (Fset.member A) xs)"
|
|
|
232 |
by (simp_all only: Set_def Coset_def foldl_list_of_dlist subtract_remove list_of_dlist_filter)
|
|
|
233 |
|
|
|
234 |
lemma union_code [code]:
|
|
|
235 |
"sup (Set xs) A = fold Fset.insert xs A"
|
|
|
236 |
"sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)"
|
|
|
237 |
by (simp_all only: Set_def Coset_def foldl_list_of_dlist union_insert list_of_dlist_filter)
|
|
|
238 |
|
|
|
239 |
context complete_lattice
|
|
|
240 |
begin
|
|
|
241 |
|
|
|
242 |
lemma Infimum_code [code]:
|
|
|
243 |
"Infimum (Set As) = fold inf As top"
|
|
|
244 |
by (simp only: Set_def Infimum_inf foldl_list_of_dlist inf.commute)
|
|
|
245 |
|
|
|
246 |
lemma Supremum_code [code]:
|
|
|
247 |
"Supremum (Set As) = fold sup As bot"
|
|
|
248 |
by (simp only: Set_def Supremum_sup foldl_list_of_dlist sup.commute)
|
|
|
249 |
|
|
|
250 |
end
|
|
|
251 |
|
|
|
252 |
hide (open) const member fold empty insert remove map filter null member length fold
|
|
|
253 |
|
|
|
254 |
end
|