| 
12088
 | 
     1  | 
(*  Title:      ZF/ex/Primrec_defs.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Primitive Recursive Functions: preliminary definitions of the constructors
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
[These must reside in a separate theory in order to be visible in the
  | 
| 
 | 
     9  | 
 con_defs part of prim_rec's inductive definition.]
  | 
| 
 | 
    10  | 
*)
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
Primrec_defs = Main +
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
consts
  | 
| 
 | 
    15  | 
    SC      :: i
  | 
| 
 | 
    16  | 
    CONST   :: i=>i
  | 
| 
 | 
    17  | 
    PROJ    :: i=>i
  | 
| 
 | 
    18  | 
    COMP    :: [i,i]=>i
  | 
| 
 | 
    19  | 
    PREC    :: [i,i]=>i
  | 
| 
 | 
    20  | 
    ACK     :: i=>i
  | 
| 
 | 
    21  | 
    ack     :: [i,i]=>i
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
translations
  | 
| 
 | 
    24  | 
  "ack(x,y)"  == "ACK(x) ` [y]"
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
defs
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  SC_def    "SC == \\<lambda>l \\<in> list(nat).list_case(0, %x xs. succ(x), l)"
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
  CONST_def "CONST(k) == \\<lambda>l \\<in> list(nat).k"
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
  PROJ_def  "PROJ(i) == \\<lambda>l \\<in> list(nat). list_case(0, %x xs. x, drop(i,l))"
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
  COMP_def  "COMP(g,fs) == \\<lambda>l \\<in> list(nat). g ` List.map(%f. f`l, fs)"
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
  (*Note that g is applied first to PREC(f,g)`y and then to y!*)
  | 
| 
 | 
    37  | 
  PREC_def  "PREC(f,g) == 
  | 
| 
 | 
    38  | 
            \\<lambda>l \\<in> list(nat). list_case(0, 
  | 
| 
 | 
    39  | 
                      %x xs. rec(x, f`xs, %y r. g ` Cons(r, Cons(y, xs))), l)"
  | 
| 
 | 
    40  | 
  
  | 
| 
 | 
    41  | 
primrec
  | 
| 
 | 
    42  | 
  ACK_0     "ACK(0) = SC"
  | 
| 
 | 
    43  | 
  ACK_succ  "ACK(succ(i)) = PREC (CONST (ACK(i) ` [1]),
  | 
| 
 | 
    44  | 
				  COMP(ACK(i), [PROJ(0)]))"
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
end
  |