| author | wenzelm | 
| Sat, 23 Feb 2013 12:55:59 +0100 | |
| changeset 51252 | 03d1fca818a4 | 
| parent 49962 | a8cc904a6820 | 
| child 52778 | 19fa3e3964f0 | 
| permissions | -rw-r--r-- | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33153diff
changeset | 1 | (* Title: HOL/Decision_Procs/Polynomial_List.thy | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33153diff
changeset | 2 | Author: Amine Chaieb | 
| 33153 | 3 | *) | 
| 4 | ||
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33153diff
changeset | 5 | header {* Univariate Polynomials as Lists *}
 | 
| 33153 | 6 | |
| 7 | theory Polynomial_List | |
| 8 | imports Main | |
| 9 | begin | |
| 10 | ||
| 11 | text{* Application of polynomial as a real function. *}
 | |
| 12 | ||
| 39246 | 13 | primrec poly :: "'a list => 'a  => ('a::{comm_ring})" where
 | 
| 33153 | 14 | poly_Nil: "poly [] x = 0" | 
| 39246 | 15 | | poly_Cons: "poly (h#t) x = h + x * poly t x" | 
| 33153 | 16 | |
| 17 | ||
| 18 | subsection{*Arithmetic Operations on Polynomials*}
 | |
| 19 | ||
| 20 | text{*addition*}
 | |
| 39246 | 21 | primrec padd :: "['a list, 'a list] => ('a::comm_ring_1) list"  (infixl "+++" 65) where
 | 
| 33153 | 22 | padd_Nil: "[] +++ l2 = l2" | 
| 39246 | 23 | | padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t | 
| 33153 | 24 | else (h + hd l2)#(t +++ tl l2))" | 
| 25 | ||
| 26 | text{*Multiplication by a constant*}
 | |
| 39246 | 27 | primrec cmult :: "['a :: comm_ring_1, 'a list] => 'a list" (infixl "%*" 70) where | 
| 28 | cmult_Nil: "c %* [] = []" | |
| 29 | | cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" | |
| 33153 | 30 | |
| 31 | text{*Multiplication by a polynomial*}
 | |
| 39246 | 32 | primrec pmult :: "['a list, 'a list] => ('a::comm_ring_1) list"  (infixl "***" 70) where
 | 
| 33 | pmult_Nil: "[] *** l2 = []" | |
| 34 | | pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2 | |
| 33153 | 35 | else (h %* l2) +++ ((0) # (t *** l2)))" | 
| 36 | ||
| 37 | text{*Repeated multiplication by a polynomial*}
 | |
| 39246 | 38 | primrec mulexp :: "[nat, 'a list, 'a  list] => ('a ::comm_ring_1) list" where
 | 
| 39 | mulexp_zero: "mulexp 0 p q = q" | |
| 40 | | mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" | |
| 33153 | 41 | |
| 42 | text{*Exponential*}
 | |
| 39246 | 43 | primrec pexp :: "['a list, nat] => ('a::comm_ring_1) list"  (infixl "%^" 80) where
 | 
| 44 | pexp_0: "p %^ 0 = [1]" | |
| 45 | | pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" | |
| 33153 | 46 | |
| 47 | text{*Quotient related value of dividing a polynomial by x + a*}
 | |
| 48 | (* Useful for divisor properties in inductive proofs *) | |
| 39246 | 49 | primrec pquot :: "['a list, 'a::field] => 'a list" where | 
| 50 | pquot_Nil: "pquot [] a= []" | |
| 51 | | pquot_Cons: "pquot (h#t) a = (if t = [] then [h] | |
| 33153 | 52 | else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" | 
| 53 | ||
| 54 | ||
| 55 | text{*normalization of polynomials (remove extra 0 coeff)*}
 | |
| 39246 | 56 | primrec pnormalize :: "('a::comm_ring_1) list => 'a list" where
 | 
| 57 | pnormalize_Nil: "pnormalize [] = []" | |
| 58 | | pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = []) | |
| 33153 | 59 | then (if (h = 0) then [] else [h]) | 
| 60 | else (h#(pnormalize p)))" | |
| 61 | ||
| 62 | definition "pnormal p = ((pnormalize p = p) \<and> p \<noteq> [])" | |
| 63 | definition "nonconstant p = (pnormal p \<and> (\<forall>x. p \<noteq> [x]))" | |
| 64 | text{*Other definitions*}
 | |
| 65 | ||
| 66 | definition | |
| 67 |   poly_minus :: "'a list => ('a :: comm_ring_1) list"      ("-- _" [80] 80) where
 | |
| 68 | "-- p = (- 1) %* p" | |
| 69 | ||
| 70 | definition | |
| 71 |   divides :: "[('a::comm_ring_1) list, 'a list] => bool"  (infixl "divides" 70) where
 | |
| 72 | "p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))" | |
| 73 | ||
| 74 | definition | |
| 75 |   order :: "('a::comm_ring_1) => 'a list => nat" where
 | |
| 76 |     --{*order of a polynomial*}
 | |
| 77 | "order a p = (SOME n. ([-a, 1] %^ n) divides p & | |
| 78 | ~ (([-a, 1] %^ (Suc n)) divides p))" | |
| 79 | ||
| 80 | definition | |
| 81 |   degree :: "('a::comm_ring_1) list => nat" where
 | |
| 82 |      --{*degree of a polynomial*}
 | |
| 83 | "degree p = length (pnormalize p) - 1" | |
| 84 | ||
| 85 | definition | |
| 86 |   rsquarefree :: "('a::comm_ring_1) list => bool" where
 | |
| 87 |      --{*squarefree polynomials --- NB with respect to real roots only.*}
 | |
| 88 | "rsquarefree p = (poly p \<noteq> poly [] & | |
| 89 | (\<forall>a. (order a p = 0) | (order a p = 1)))" | |
| 90 | ||
| 91 | lemma padd_Nil2: "p +++ [] = p" | |
| 92 | by (induct p) auto | |
| 93 | declare padd_Nil2 [simp] | |
| 94 | ||
| 95 | lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)" | |
| 96 | by auto | |
| 97 | ||
| 98 | lemma pminus_Nil: "-- [] = []" | |
| 99 | by (simp add: poly_minus_def) | |
| 100 | declare pminus_Nil [simp] | |
| 101 | ||
| 102 | lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" | |
| 103 | by simp | |
| 104 | ||
| 105 | lemma poly_ident_mult: "1 %* t = t" | |
| 106 | by (induct "t", auto) | |
| 107 | declare poly_ident_mult [simp] | |
| 108 | ||
| 109 | lemma poly_simple_add_Cons: "[a] +++ ((0)#t) = (a#t)" | |
| 110 | by simp | |
| 111 | declare poly_simple_add_Cons [simp] | |
| 112 | ||
| 113 | text{*Handy general properties*}
 | |
| 114 | ||
| 115 | lemma padd_commut: "b +++ a = a +++ b" | |
| 116 | apply (subgoal_tac "\<forall>a. b +++ a = a +++ b") | |
| 117 | apply (induct_tac [2] "b", auto) | |
| 118 | apply (rule padd_Cons [THEN ssubst]) | |
| 119 | apply (case_tac "aa", auto) | |
| 120 | done | |
| 121 | ||
| 122 | lemma padd_assoc [rule_format]: "\<forall>b c. (a +++ b) +++ c = a +++ (b +++ c)" | |
| 123 | apply (induct "a", simp, clarify) | |
| 124 | apply (case_tac b, simp_all) | |
| 125 | done | |
| 126 | ||
| 127 | lemma poly_cmult_distr [rule_format]: | |
| 128 | "\<forall>q. a %* ( p +++ q) = (a %* p +++ a %* q)" | |
| 129 | apply (induct "p", simp, clarify) | |
| 130 | apply (case_tac "q") | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 131 | apply (simp_all add: distrib_left) | 
| 33153 | 132 | done | 
| 133 | ||
| 134 | lemma pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)" | |
| 135 | apply (induct "t", simp) | |
| 136 | by (auto simp add: mult_zero_left poly_ident_mult padd_commut) | |
| 137 | ||
| 138 | ||
| 139 | text{*properties of evaluation of polynomials.*}
 | |
| 140 | ||
| 141 | lemma poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" | |
| 142 | apply (subgoal_tac "\<forall>p2. poly (p1 +++ p2) x = poly (p1) x + poly (p2) x") | |
| 143 | apply (induct_tac [2] "p1", auto) | |
| 144 | apply (case_tac "p2") | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 145 | apply (auto simp add: distrib_left) | 
| 33153 | 146 | done | 
| 147 | ||
| 148 | lemma poly_cmult: "poly (c %* p) x = c * poly p x" | |
| 149 | apply (induct "p") | |
| 150 | apply (case_tac [2] "x=0") | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 151 | apply (auto simp add: distrib_left mult_ac) | 
| 33153 | 152 | done | 
| 153 | ||
| 154 | lemma poly_minus: "poly (-- p) x = - (poly p x)" | |
| 155 | apply (simp add: poly_minus_def) | |
| 156 | apply (auto simp add: poly_cmult) | |
| 157 | done | |
| 158 | ||
| 159 | lemma poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" | |
| 160 | apply (subgoal_tac "\<forall>p2. poly (p1 *** p2) x = poly p1 x * poly p2 x") | |
| 161 | apply (simp (no_asm_simp)) | |
| 162 | apply (induct "p1") | |
| 163 | apply (auto simp add: poly_cmult) | |
| 164 | apply (case_tac p1) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 165 | apply (auto simp add: poly_cmult poly_add distrib_right distrib_left mult_ac) | 
| 33153 | 166 | done | 
| 167 | ||
| 168 | lemma poly_exp: "poly (p %^ n) (x::'a::comm_ring_1) = (poly p x) ^ n" | |
| 169 | apply (induct "n") | |
| 170 | apply (auto simp add: poly_cmult poly_mult power_Suc) | |
| 171 | done | |
| 172 | ||
| 173 | text{*More Polynomial Evaluation Lemmas*}
 | |
| 174 | ||
| 175 | lemma poly_add_rzero: "poly (a +++ []) x = poly a x" | |
| 176 | by simp | |
| 177 | declare poly_add_rzero [simp] | |
| 178 | ||
| 179 | lemma poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" | |
| 180 | by (simp add: poly_mult mult_assoc) | |
| 181 | ||
| 182 | lemma poly_mult_Nil2: "poly (p *** []) x = 0" | |
| 183 | by (induct "p", auto) | |
| 184 | declare poly_mult_Nil2 [simp] | |
| 185 | ||
| 186 | lemma poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" | |
| 187 | apply (induct "n") | |
| 188 | apply (auto simp add: poly_mult mult_assoc) | |
| 189 | done | |
| 190 | ||
| 191 | subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides
 | |
| 192 |  @{term "p(x)"} *}
 | |
| 193 | ||
| 194 | lemma lemma_poly_linear_rem: "\<forall>h. \<exists>q r. h#t = [r] +++ [-a, 1] *** q" | |
| 195 | apply (induct "t", safe) | |
| 196 | apply (rule_tac x = "[]" in exI) | |
| 197 | apply (rule_tac x = h in exI, simp) | |
| 198 | apply (drule_tac x = aa in spec, safe) | |
| 199 | apply (rule_tac x = "r#q" in exI) | |
| 200 | apply (rule_tac x = "a*r + h" in exI) | |
| 201 | apply (case_tac "q", auto) | |
| 202 | done | |
| 203 | ||
| 204 | lemma poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q" | |
| 205 | by (cut_tac t = t and a = a in lemma_poly_linear_rem, auto) | |
| 206 | ||
| 207 | ||
| 208 | lemma poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 209 | apply (auto simp add: poly_add poly_cmult distrib_left) | 
| 33153 | 210 | apply (case_tac "p", simp) | 
| 211 | apply (cut_tac h = aa and t = list and a = a in poly_linear_rem, safe) | |
| 212 | apply (case_tac "q", auto) | |
| 213 | apply (drule_tac x = "[]" in spec, simp) | |
| 214 | apply (auto simp add: poly_add poly_cmult add_assoc) | |
| 215 | apply (drule_tac x = "aa#lista" in spec, auto) | |
| 216 | done | |
| 217 | ||
| 218 | lemma lemma_poly_length_mult: "\<forall>h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" | |
| 219 | by (induct "p", auto) | |
| 220 | declare lemma_poly_length_mult [simp] | |
| 221 | ||
| 222 | lemma lemma_poly_length_mult2: "\<forall>h k. length (k %* p +++ (h # p)) = Suc (length p)" | |
| 223 | by (induct "p", auto) | |
| 224 | declare lemma_poly_length_mult2 [simp] | |
| 225 | ||
| 226 | lemma poly_length_mult: "length([-a,1] *** q) = Suc (length q)" | |
| 227 | by auto | |
| 228 | declare poly_length_mult [simp] | |
| 229 | ||
| 230 | ||
| 231 | subsection{*Polynomial length*}
 | |
| 232 | ||
| 233 | lemma poly_cmult_length: "length (a %* p) = length p" | |
| 234 | by (induct "p", auto) | |
| 235 | declare poly_cmult_length [simp] | |
| 236 | ||
| 237 | lemma poly_add_length [rule_format]: | |
| 238 | "\<forall>p2. length (p1 +++ p2) = | |
| 239 | (if (length p1 < length p2) then length p2 else length p1)" | |
| 240 | apply (induct "p1", simp_all) | |
| 241 | apply arith | |
| 242 | done | |
| 243 | ||
| 244 | lemma poly_root_mult_length: "length([a,b] *** p) = Suc (length p)" | |
| 245 | by (simp add: poly_cmult_length poly_add_length) | |
| 246 | declare poly_root_mult_length [simp] | |
| 247 | ||
| 248 | lemma poly_mult_not_eq_poly_Nil: "(poly (p *** q) x \<noteq> poly [] x) = | |
| 249 | (poly p x \<noteq> poly [] x & poly q x \<noteq> poly [] (x::'a::idom))" | |
| 250 | apply (auto simp add: poly_mult) | |
| 251 | done | |
| 252 | declare poly_mult_not_eq_poly_Nil [simp] | |
| 253 | ||
| 254 | lemma poly_mult_eq_zero_disj: "(poly (p *** q) (x::'a::idom) = 0) = (poly p x = 0 | poly q x = 0)" | |
| 255 | by (auto simp add: poly_mult) | |
| 256 | ||
| 257 | text{*Normalisation Properties*}
 | |
| 258 | ||
| 259 | lemma poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)" | |
| 260 | by (induct "p", auto) | |
| 261 | ||
| 262 | text{*A nontrivial polynomial of degree n has no more than n roots*}
 | |
| 263 | ||
| 264 | lemma poly_roots_index_lemma0 [rule_format]: | |
| 265 | "\<forall>p x. poly p x \<noteq> poly [] x & length p = n | |
| 266 | --> (\<exists>i. \<forall>x. (poly p x = (0::'a::idom)) --> (\<exists>m. (m \<le> n & x = i m)))" | |
| 267 | apply (induct "n", safe) | |
| 268 | apply (rule ccontr) | |
| 269 | apply (subgoal_tac "\<exists>a. poly p a = 0", safe) | |
| 270 | apply (drule poly_linear_divides [THEN iffD1], safe) | |
| 271 | apply (drule_tac x = q in spec) | |
| 272 | apply (drule_tac x = x in spec) | |
| 273 | apply (simp del: poly_Nil pmult_Cons) | |
| 274 | apply (erule exE) | |
| 275 | apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec, safe) | |
| 276 | apply (drule poly_mult_eq_zero_disj [THEN iffD1], safe) | |
| 277 | apply (drule_tac x = "Suc (length q)" in spec) | |
| 36350 | 278 | apply (auto simp add: field_simps) | 
| 33153 | 279 | apply (drule_tac x = xa in spec) | 
| 36350 | 280 | apply (clarsimp simp add: field_simps) | 
| 33153 | 281 | apply (drule_tac x = m in spec) | 
| 36350 | 282 | apply (auto simp add:field_simps) | 
| 33153 | 283 | done | 
| 45605 | 284 | lemmas poly_roots_index_lemma1 = conjI [THEN poly_roots_index_lemma0] | 
| 33153 | 285 | |
| 286 | lemma poly_roots_index_length0: "poly p (x::'a::idom) \<noteq> poly [] x ==> | |
| 287 | \<exists>i. \<forall>x. (poly p x = 0) --> (\<exists>n. n \<le> length p & x = i n)" | |
| 288 | by (blast intro: poly_roots_index_lemma1) | |
| 289 | ||
| 290 | lemma poly_roots_finite_lemma: "poly p (x::'a::idom) \<noteq> poly [] x ==> | |
| 291 | \<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)" | |
| 292 | apply (drule poly_roots_index_length0, safe) | |
| 293 | apply (rule_tac x = "Suc (length p)" in exI) | |
| 294 | apply (rule_tac x = i in exI) | |
| 295 | apply (simp add: less_Suc_eq_le) | |
| 296 | done | |
| 297 | ||
| 298 | ||
| 299 | lemma real_finite_lemma: | |
| 300 | assumes P: "\<forall>x. P x --> (\<exists>n. n < length j & x = j!n)" | |
| 301 |   shows "finite {(x::'a::idom). P x}"
 | |
| 302 | proof- | |
| 303 |   let ?M = "{x. P x}"
 | |
| 304 | let ?N = "set j" | |
| 305 | have "?M \<subseteq> ?N" using P by auto | |
| 306 | thus ?thesis using finite_subset by auto | |
| 307 | qed | |
| 308 | ||
| 309 | lemma poly_roots_index_lemma [rule_format]: | |
| 310 | "\<forall>p x. poly p x \<noteq> poly [] x & length p = n | |
| 311 |     --> (\<exists>i. \<forall>x. (poly p x = (0::'a::{idom})) --> x \<in> set i)"
 | |
| 312 | apply (induct "n", safe) | |
| 313 | apply (rule ccontr) | |
| 314 | apply (subgoal_tac "\<exists>a. poly p a = 0", safe) | |
| 315 | apply (drule poly_linear_divides [THEN iffD1], safe) | |
| 316 | apply (drule_tac x = q in spec) | |
| 317 | apply (drule_tac x = x in spec) | |
| 318 | apply (auto simp del: poly_Nil pmult_Cons) | |
| 319 | apply (drule_tac x = "a#i" in spec) | |
| 320 | apply (auto simp only: poly_mult List.list.size) | |
| 321 | apply (drule_tac x = xa in spec) | |
| 36350 | 322 | apply (clarsimp simp add: field_simps) | 
| 33153 | 323 | done | 
| 324 | ||
| 45605 | 325 | lemmas poly_roots_index_lemma2 = conjI [THEN poly_roots_index_lemma] | 
| 33153 | 326 | |
| 327 | lemma poly_roots_index_length: "poly p (x::'a::idom) \<noteq> poly [] x ==> | |
| 328 | \<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i" | |
| 329 | by (blast intro: poly_roots_index_lemma2) | |
| 330 | ||
| 331 | lemma poly_roots_finite_lemma': "poly p (x::'a::idom) \<noteq> poly [] x ==> | |
| 332 | \<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i" | |
| 333 | by (drule poly_roots_index_length, safe) | |
| 334 | ||
| 335 | lemma UNIV_nat_infinite: "\<not> finite (UNIV :: nat set)" | |
| 336 | unfolding finite_conv_nat_seg_image | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39246diff
changeset | 337 | proof(auto simp add: set_eq_iff image_iff) | 
| 33153 | 338 | fix n::nat and f:: "nat \<Rightarrow> nat" | 
| 339 |   let ?N = "{i. i < n}"
 | |
| 340 | let ?fN = "f ` ?N" | |
| 341 | let ?y = "Max ?fN + 1" | |
| 342 | from nat_seg_image_imp_finite[of "?fN" "f" n] | |
| 343 | have thfN: "finite ?fN" by simp | |
| 344 |   {assume "n =0" hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto}
 | |
| 345 | moreover | |
| 346 |   {assume nz: "n \<noteq> 0"
 | |
| 347 |     hence thne: "?fN \<noteq> {}" by (auto simp add: neq0_conv)
 | |
| 348 | have "\<forall>x\<in> ?fN. Max ?fN \<ge> x" using nz Max_ge_iff[OF thfN thne] by auto | |
| 349 | hence "\<forall>x\<in> ?fN. ?y > x" by (auto simp add: less_Suc_eq_le) | |
| 350 | hence "?y \<notin> ?fN" by auto | |
| 351 | hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto } | |
| 352 | ultimately show "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by blast | |
| 353 | qed | |
| 354 | ||
| 355 | lemma UNIV_ring_char_0_infinte: "\<not> finite (UNIV:: ('a::ring_char_0) set)"
 | |
| 356 | proof | |
| 357 | assume F: "finite (UNIV :: 'a set)" | |
| 358 | have th0: "of_nat ` UNIV \<subseteq> (UNIV:: 'a set)" by simp | |
| 359 | from finite_subset[OF th0 F] have th: "finite (of_nat ` UNIV :: 'a set)" . | |
| 360 | have th': "inj_on (of_nat::nat \<Rightarrow> 'a) (UNIV)" | |
| 361 | unfolding inj_on_def by auto | |
| 362 | from finite_imageD[OF th th'] UNIV_nat_infinite | |
| 363 | show False by blast | |
| 364 | qed | |
| 365 | ||
| 366 | lemma poly_roots_finite: "(poly p \<noteq> poly []) = | |
| 367 |   finite {x. poly p x = (0::'a::{idom, ring_char_0})}"
 | |
| 368 | proof | |
| 369 | assume H: "poly p \<noteq> poly []" | |
| 370 |   show "finite {x. poly p x = (0::'a)}"
 | |
| 371 | using H | |
| 372 | apply - | |
| 373 | apply (erule contrapos_np, rule ext) | |
| 374 | apply (rule ccontr) | |
| 375 | apply (clarify dest!: poly_roots_finite_lemma') | |
| 376 | using finite_subset | |
| 377 | proof- | |
| 378 | fix x i | |
| 379 |     assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}" 
 | |
| 380 | and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i" | |
| 381 |     let ?M= "{x. poly p x = (0\<Colon>'a)}"
 | |
| 382 | from P have "?M \<subseteq> set i" by auto | |
| 383 | with finite_subset F show False by auto | |
| 384 | qed | |
| 385 | next | |
| 386 |   assume F: "finite {x. poly p x = (0\<Colon>'a)}"
 | |
| 387 | show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto | |
| 388 | qed | |
| 389 | ||
| 390 | text{*Entirety and Cancellation for polynomials*}
 | |
| 391 | ||
| 392 | lemma poly_entire_lemma: "[| poly (p:: ('a::{idom,ring_char_0}) list) \<noteq> poly [] ; poly q \<noteq> poly [] |]
 | |
| 393 | ==> poly (p *** q) \<noteq> poly []" | |
| 394 | by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq) | |
| 395 | ||
| 396 | lemma poly_entire: "(poly (p *** q) = poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p = poly []) | (poly q = poly []))"
 | |
| 397 | apply (auto intro: ext dest: fun_cong simp add: poly_entire_lemma poly_mult) | |
| 398 | apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst]) | |
| 399 | done | |
| 400 | ||
| 401 | lemma poly_entire_neg: "(poly (p *** q) \<noteq> poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
 | |
| 402 | by (simp add: poly_entire) | |
| 403 | ||
| 404 | lemma fun_eq: " (f = g) = (\<forall>x. f x = g x)" | |
| 405 | by (auto intro!: ext) | |
| 406 | ||
| 407 | lemma poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)" | |
| 36350 | 408 | by (auto simp add: field_simps poly_add poly_minus_def fun_eq poly_cmult) | 
| 33153 | 409 | |
| 410 | lemma poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 411 | by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left) | 
| 33153 | 412 | |
| 413 | lemma poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = (poly p = poly ([]::('a::{idom, ring_char_0}) list) | poly q = poly r)"
 | |
| 414 | apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst]) | |
| 415 | apply (auto intro: ext simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) | |
| 416 | done | |
| 417 | ||
| 418 | lemma poly_exp_eq_zero: | |
| 419 |      "(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \<noteq> 0)"
 | |
| 37598 | 420 | apply (simp only: fun_eq add: HOL.all_simps [symmetric]) | 
| 33153 | 421 | apply (rule arg_cong [where f = All]) | 
| 422 | apply (rule ext) | |
| 423 | apply (induct_tac "n") | |
| 424 | apply (auto simp add: poly_mult) | |
| 425 | done | |
| 426 | declare poly_exp_eq_zero [simp] | |
| 427 | ||
| 428 | lemma poly_prime_eq_zero: "poly [a,(1::'a::comm_ring_1)] \<noteq> poly []" | |
| 429 | apply (simp add: fun_eq) | |
| 430 | apply (rule_tac x = "1 - a" in exI, simp) | |
| 431 | done | |
| 432 | declare poly_prime_eq_zero [simp] | |
| 433 | ||
| 434 | lemma poly_exp_prime_eq_zero: "(poly ([a, (1::'a::idom)] %^ n) \<noteq> poly [])" | |
| 435 | by auto | |
| 436 | declare poly_exp_prime_eq_zero [simp] | |
| 437 | ||
| 438 | text{*A more constructive notion of polynomials being trivial*}
 | |
| 439 | ||
| 440 | lemma poly_zero_lemma': "poly (h # t) = poly [] ==> h = (0::'a::{idom,ring_char_0}) & poly t = poly []"
 | |
| 441 | apply(simp add: fun_eq) | |
| 442 | apply (case_tac "h = 0") | |
| 443 | apply (drule_tac [2] x = 0 in spec, auto) | |
| 444 | apply (case_tac "poly t = poly []", simp) | |
| 445 | proof- | |
| 446 | fix x | |
| 447 | assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)" and pnz: "poly t \<noteq> poly []" | |
| 448 |   let ?S = "{x. poly t x = 0}"
 | |
| 449 | from H have "\<forall>x. x \<noteq>0 \<longrightarrow> poly t x = 0" by blast | |
| 450 |   hence th: "?S \<supseteq> UNIV - {0}" by auto
 | |
| 451 | from poly_roots_finite pnz have th': "finite ?S" by blast | |
| 452 | from finite_subset[OF th th'] UNIV_ring_char_0_infinte[where ?'a = 'a] | |
| 453 | show "poly t x = (0\<Colon>'a)" by simp | |
| 454 | qed | |
| 455 | ||
| 456 | lemma poly_zero: "(poly p = poly []) = list_all (%c. c = (0::'a::{idom,ring_char_0})) p"
 | |
| 457 | apply (induct "p", simp) | |
| 458 | apply (rule iffI) | |
| 459 | apply (drule poly_zero_lemma', auto) | |
| 460 | done | |
| 461 | ||
| 462 | ||
| 463 | ||
| 464 | text{*Basics of divisibility.*}
 | |
| 465 | ||
| 466 | lemma poly_primes: "([a, (1::'a::idom)] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 467 | apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric]) | 
| 33153 | 468 | apply (drule_tac x = "-a" in spec) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 469 | apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) | 
| 33153 | 470 | apply (rule_tac x = "qa *** q" in exI) | 
| 471 | apply (rule_tac [2] x = "p *** qa" in exI) | |
| 472 | apply (auto simp add: poly_add poly_mult poly_cmult mult_ac) | |
| 473 | done | |
| 474 | ||
| 475 | lemma poly_divides_refl: "p divides p" | |
| 476 | apply (simp add: divides_def) | |
| 477 | apply (rule_tac x = "[1]" in exI) | |
| 478 | apply (auto simp add: poly_mult fun_eq) | |
| 479 | done | |
| 480 | declare poly_divides_refl [simp] | |
| 481 | ||
| 482 | lemma poly_divides_trans: "[| p divides q; q divides r |] ==> p divides r" | |
| 483 | apply (simp add: divides_def, safe) | |
| 484 | apply (rule_tac x = "qa *** qaa" in exI) | |
| 485 | apply (auto simp add: poly_mult fun_eq mult_assoc) | |
| 486 | done | |
| 487 | ||
| 488 | lemma poly_divides_exp: "m \<le> n ==> (p %^ m) divides (p %^ n)" | |
| 489 | apply (auto simp add: le_iff_add) | |
| 490 | apply (induct_tac k) | |
| 491 | apply (rule_tac [2] poly_divides_trans) | |
| 492 | apply (auto simp add: divides_def) | |
| 493 | apply (rule_tac x = p in exI) | |
| 494 | apply (auto simp add: poly_mult fun_eq mult_ac) | |
| 495 | done | |
| 496 | ||
| 497 | lemma poly_exp_divides: "[| (p %^ n) divides q; m\<le>n |] ==> (p %^ m) divides q" | |
| 498 | by (blast intro: poly_divides_exp poly_divides_trans) | |
| 499 | ||
| 500 | lemma poly_divides_add: | |
| 501 | "[| p divides q; p divides r |] ==> p divides (q +++ r)" | |
| 502 | apply (simp add: divides_def, auto) | |
| 503 | apply (rule_tac x = "qa +++ qaa" in exI) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 504 | apply (auto simp add: poly_add fun_eq poly_mult distrib_left) | 
| 33153 | 505 | done | 
| 506 | ||
| 507 | lemma poly_divides_diff: | |
| 508 | "[| p divides q; p divides (q +++ r) |] ==> p divides r" | |
| 509 | apply (simp add: divides_def, auto) | |
| 510 | apply (rule_tac x = "qaa +++ -- qa" in exI) | |
| 511 | apply (auto simp add: poly_add fun_eq poly_mult poly_minus right_diff_distrib algebra_simps) | |
| 512 | done | |
| 513 | ||
| 514 | lemma poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q" | |
| 515 | apply (erule poly_divides_diff) | |
| 516 | apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac) | |
| 517 | done | |
| 518 | ||
| 519 | lemma poly_divides_zero: "poly p = poly [] ==> q divides p" | |
| 520 | apply (simp add: divides_def) | |
| 521 | apply (rule exI[where x="[]"]) | |
| 522 | apply (auto simp add: fun_eq poly_mult) | |
| 523 | done | |
| 524 | ||
| 525 | lemma poly_divides_zero2: "q divides []" | |
| 526 | apply (simp add: divides_def) | |
| 527 | apply (rule_tac x = "[]" in exI) | |
| 528 | apply (auto simp add: fun_eq) | |
| 529 | done | |
| 530 | declare poly_divides_zero2 [simp] | |
| 531 | ||
| 532 | text{*At last, we can consider the order of a root.*}
 | |
| 533 | ||
| 534 | ||
| 535 | lemma poly_order_exists_lemma [rule_format]: | |
| 536 | "\<forall>p. length p = d --> poly p \<noteq> poly [] | |
| 537 |              --> (\<exists>n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \<noteq> 0)"
 | |
| 538 | apply (induct "d") | |
| 539 | apply (simp add: fun_eq, safe) | |
| 540 | apply (case_tac "poly p a = 0") | |
| 541 | apply (drule_tac poly_linear_divides [THEN iffD1], safe) | |
| 542 | apply (drule_tac x = q in spec) | |
| 543 | apply (drule_tac poly_entire_neg [THEN iffD1], safe, force) | |
| 544 | apply (rule_tac x = "Suc n" in exI) | |
| 545 | apply (rule_tac x = qa in exI) | |
| 546 | apply (simp del: pmult_Cons) | |
| 547 | apply (rule_tac x = 0 in exI, force) | |
| 548 | done | |
| 549 | ||
| 550 | (* FIXME: Tidy up *) | |
| 551 | lemma poly_order_exists: | |
| 552 | "[| length p = d; poly p \<noteq> poly [] |] | |
| 553 | ==> \<exists>n. ([-a, 1] %^ n) divides p & | |
| 554 |                 ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)"
 | |
| 555 | apply (drule poly_order_exists_lemma [where a=a], assumption, clarify) | |
| 556 | apply (rule_tac x = n in exI, safe) | |
| 557 | apply (unfold divides_def) | |
| 558 | apply (rule_tac x = q in exI) | |
| 559 | apply (induct_tac "n", simp) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
45605diff
changeset | 560 | apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult distrib_left mult_ac) | 
| 33153 | 561 | apply safe | 
| 562 | apply (subgoal_tac "poly (mulexp n [- a, 1] q) \<noteq> poly ([- a, 1] %^ Suc n *** qa)") | |
| 563 | apply simp | |
| 564 | apply (induct_tac "n") | |
| 565 | apply (simp del: pmult_Cons pexp_Suc) | |
| 566 | apply (erule_tac Q = "poly q a = 0" in contrapos_np) | |
| 567 | apply (simp add: poly_add poly_cmult) | |
| 568 | apply (rule pexp_Suc [THEN ssubst]) | |
| 569 | apply (rule ccontr) | |
| 570 | apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc) | |
| 571 | done | |
| 572 | ||
| 573 | lemma poly_one_divides: "[1] divides p" | |
| 574 | by (simp add: divides_def, auto) | |
| 575 | declare poly_one_divides [simp] | |
| 576 | ||
| 577 | lemma poly_order: "poly p \<noteq> poly [] | |
| 578 |       ==> EX! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p &
 | |
| 579 | ~(([-a, 1] %^ (Suc n)) divides p)" | |
| 580 | apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) | |
| 581 | apply (cut_tac x = y and y = n in less_linear) | |
| 582 | apply (drule_tac m = n in poly_exp_divides) | |
| 583 | apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] | |
| 584 | simp del: pmult_Cons pexp_Suc) | |
| 585 | done | |
| 586 | ||
| 587 | text{*Order*}
 | |
| 588 | ||
| 589 | lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n" | |
| 590 | by (blast intro: someI2) | |
| 591 | ||
| 592 | lemma order: | |
| 593 |       "(([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p &
 | |
| 594 | ~(([-a, 1] %^ (Suc n)) divides p)) = | |
| 595 | ((n = order a p) & ~(poly p = poly []))" | |
| 596 | apply (unfold order_def) | |
| 597 | apply (rule iffI) | |
| 598 | apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) | |
| 599 | apply (blast intro!: poly_order [THEN [2] some1_equalityD]) | |
| 600 | done | |
| 601 | ||
| 602 | lemma order2: "[| poly p \<noteq> poly [] |] | |
| 603 |       ==> ([-a, (1::'a::{idom,ring_char_0})] %^ (order a p)) divides p &
 | |
| 604 | ~(([-a, 1] %^ (Suc(order a p))) divides p)" | |
| 605 | by (simp add: order del: pexp_Suc) | |
| 606 | ||
| 607 | lemma order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p; | |
| 608 |          ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)
 | |
| 609 | |] ==> (n = order a p)" | |
| 610 | by (insert order [of a n p], auto) | |
| 611 | ||
| 612 | lemma order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p & | |
| 613 |          ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p))
 | |
| 614 | ==> (n = order a p)" | |
| 615 | by (blast intro: order_unique) | |
| 616 | ||
| 617 | lemma order_poly: "poly p = poly q ==> order a p = order a q" | |
| 618 | by (auto simp add: fun_eq divides_def poly_mult order_def) | |
| 619 | ||
| 620 | lemma pexp_one: "p %^ (Suc 0) = p" | |
| 621 | apply (induct "p") | |
| 622 | apply (auto simp add: numeral_1_eq_1) | |
| 623 | done | |
| 624 | declare pexp_one [simp] | |
| 625 | ||
| 626 | lemma lemma_order_root [rule_format]: | |
| 627 | "\<forall>p a. 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p | |
| 628 | --> poly p a = 0" | |
| 629 | apply (induct "n", blast) | |
| 630 | apply (auto simp add: divides_def poly_mult simp del: pmult_Cons) | |
| 631 | done | |
| 632 | ||
| 633 | lemma order_root: "(poly p a = (0::'a::{idom,ring_char_0})) = ((poly p = poly []) | order a p \<noteq> 0)"
 | |
| 634 | apply (case_tac "poly p = poly []", auto) | |
| 635 | apply (simp add: poly_linear_divides del: pmult_Cons, safe) | |
| 636 | apply (drule_tac [!] a = a in order2) | |
| 637 | apply (rule ccontr) | |
| 638 | apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) | |
| 639 | using neq0_conv | |
| 640 | apply (blast intro: lemma_order_root) | |
| 641 | done | |
| 642 | ||
| 643 | lemma order_divides: "(([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
 | |
| 644 | apply (case_tac "poly p = poly []", auto) | |
| 645 | apply (simp add: divides_def fun_eq poly_mult) | |
| 646 | apply (rule_tac x = "[]" in exI) | |
| 647 | apply (auto dest!: order2 [where a=a] | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33153diff
changeset | 648 | intro: poly_exp_divides simp del: pexp_Suc) | 
| 33153 | 649 | done | 
| 650 | ||
| 651 | lemma order_decomp: | |
| 652 | "poly p \<noteq> poly [] | |
| 653 | ==> \<exists>q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) & | |
| 654 |                 ~([-a, 1::'a::{idom,ring_char_0}] divides q)"
 | |
| 655 | apply (unfold divides_def) | |
| 656 | apply (drule order2 [where a = a]) | |
| 657 | apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) | |
| 658 | apply (rule_tac x = q in exI, safe) | |
| 659 | apply (drule_tac x = qa in spec) | |
| 660 | apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons) | |
| 661 | done | |
| 662 | ||
| 663 | text{*Important composition properties of orders.*}
 | |
| 664 | ||
| 665 | lemma order_mult: "poly (p *** q) \<noteq> poly [] | |
| 666 |       ==> order a (p *** q) = order a p + order (a::'a::{idom,ring_char_0}) q"
 | |
| 667 | apply (cut_tac a = a and p = "p***q" and n = "order a p + order a q" in order) | |
| 668 | apply (auto simp add: poly_entire simp del: pmult_Cons) | |
| 669 | apply (drule_tac a = a in order2)+ | |
| 670 | apply safe | |
| 671 | apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) | |
| 672 | apply (rule_tac x = "qa *** qaa" in exI) | |
| 673 | apply (simp add: poly_mult mult_ac del: pmult_Cons) | |
| 674 | apply (drule_tac a = a in order_decomp)+ | |
| 675 | apply safe | |
| 676 | apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") | |
| 677 | apply (simp add: poly_primes del: pmult_Cons) | |
| 678 | apply (auto simp add: divides_def simp del: pmult_Cons) | |
| 679 | apply (rule_tac x = qb in exI) | |
| 680 | apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") | |
| 681 | apply (drule poly_mult_left_cancel [THEN iffD1], force) | |
| 682 | apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") | |
| 683 | apply (drule poly_mult_left_cancel [THEN iffD1], force) | |
| 684 | apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) | |
| 685 | done | |
| 686 | ||
| 687 | ||
| 688 | ||
| 689 | lemma order_root2: "poly p \<noteq> poly [] ==> (poly p a = 0) = (order (a::'a::{idom,ring_char_0}) p \<noteq> 0)"
 | |
| 690 | by (rule order_root [THEN ssubst], auto) | |
| 691 | ||
| 692 | ||
| 693 | lemma pmult_one: "[1] *** p = p" | |
| 694 | by auto | |
| 695 | declare pmult_one [simp] | |
| 696 | ||
| 697 | lemma poly_Nil_zero: "poly [] = poly [0]" | |
| 698 | by (simp add: fun_eq) | |
| 699 | ||
| 700 | lemma rsquarefree_decomp: | |
| 701 |      "[| rsquarefree p; poly p a = (0::'a::{idom,ring_char_0}) |]
 | |
| 702 | ==> \<exists>q. (poly p = poly ([-a, 1] *** q)) & poly q a \<noteq> 0" | |
| 703 | apply (simp add: rsquarefree_def, safe) | |
| 704 | apply (frule_tac a = a in order_decomp) | |
| 705 | apply (drule_tac x = a in spec) | |
| 706 | apply (drule_tac a = a in order_root2 [symmetric]) | |
| 707 | apply (auto simp del: pmult_Cons) | |
| 708 | apply (rule_tac x = q in exI, safe) | |
| 709 | apply (simp add: poly_mult fun_eq) | |
| 710 | apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) | |
| 711 | apply (simp add: divides_def del: pmult_Cons, safe) | |
| 712 | apply (drule_tac x = "[]" in spec) | |
| 713 | apply (auto simp add: fun_eq) | |
| 714 | done | |
| 715 | ||
| 716 | ||
| 717 | text{*Normalization of a polynomial.*}
 | |
| 718 | ||
| 719 | lemma poly_normalize: "poly (pnormalize p) = poly p" | |
| 720 | apply (induct "p") | |
| 721 | apply (auto simp add: fun_eq) | |
| 722 | done | |
| 723 | declare poly_normalize [simp] | |
| 724 | ||
| 725 | ||
| 726 | text{*The degree of a polynomial.*}
 | |
| 727 | ||
| 728 | lemma lemma_degree_zero: | |
| 729 | "list_all (%c. c = 0) p \<longleftrightarrow> pnormalize p = []" | |
| 730 | by (induct "p", auto) | |
| 731 | ||
| 732 | lemma degree_zero: "(poly p = poly ([]:: (('a::{idom,ring_char_0}) list))) \<Longrightarrow> (degree p = 0)"
 | |
| 733 | apply (simp add: degree_def) | |
| 734 | apply (case_tac "pnormalize p = []") | |
| 735 | apply (auto simp add: poly_zero lemma_degree_zero ) | |
| 736 | done | |
| 737 | ||
| 738 | lemma pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp | |
| 739 | lemma pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp | |
| 740 | lemma pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)" | |
| 741 | unfolding pnormal_def by simp | |
| 742 | lemma pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p" | |
| 743 | unfolding pnormal_def | |
| 744 | apply (cases "pnormalize p = []", auto) | |
| 745 | by (cases "c = 0", auto) | |
| 746 | lemma pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0" | |
| 747 | apply (induct p, auto simp add: pnormal_def) | |
| 748 | apply (case_tac "pnormalize p = []", auto) | |
| 749 | by (case_tac "a=0", auto) | |
| 750 | lemma pnormal_length: "pnormal p \<Longrightarrow> 0 < length p" | |
| 751 | unfolding pnormal_def length_greater_0_conv by blast | |
| 752 | lemma pnormal_last_length: "\<lbrakk>0 < length p ; last p \<noteq> 0\<rbrakk> \<Longrightarrow> pnormal p" | |
| 753 | apply (induct p, auto) | |
| 754 | apply (case_tac "p = []", auto) | |
| 755 | apply (simp add: pnormal_def) | |
| 756 | by (rule pnormal_cons, auto) | |
| 757 | lemma pnormal_id: "pnormal p \<longleftrightarrow> (0 < length p \<and> last p \<noteq> 0)" | |
| 758 | using pnormal_last_length pnormal_length pnormal_last_nonzero by blast | |
| 759 | ||
| 760 | text{*Tidier versions of finiteness of roots.*}
 | |
| 761 | ||
| 762 | lemma poly_roots_finite_set: "poly p \<noteq> poly [] ==> finite {x::'a::{idom,ring_char_0}. poly p x = 0}"
 | |
| 763 | unfolding poly_roots_finite . | |
| 764 | ||
| 765 | text{*bound for polynomial.*}
 | |
| 766 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33268diff
changeset | 767 | lemma poly_mono: "abs(x) \<le> k ==> abs(poly p (x::'a::{linordered_idom})) \<le> poly (map abs p) k"
 | 
| 33153 | 768 | apply (induct "p", auto) | 
| 769 | apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans) | |
| 770 | apply (rule abs_triangle_ineq) | |
| 771 | apply (auto intro!: mult_mono simp add: abs_mult) | |
| 772 | done | |
| 773 | ||
| 774 | lemma poly_Sing: "poly [c] x = c" by simp | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33153diff
changeset | 775 | |
| 33153 | 776 | end |